Abstract:Vision-Language Navigation (VLN) requires agents to follow natural language instructions in partially observed 3D environments, motivating map representations that aggregate spatial context beyond local perception. However, most existing approaches rely on hand-crafted maps constructed independently of the navigation policy. We argue that maps should instead be learned representations shaped directly by navigation objectives rather than exhaustive reconstructions. Based on this insight, we propose MapDream, a map-in-the-loop framework that formulates map construction as autoregressive bird's-eye-view (BEV) image synthesis. The framework jointly learns map generation and action prediction, distilling environmental context into a compact three-channel BEV map that preserves only navigation-critical affordances. Supervised pre-training bootstraps a reliable mapping-to-control interface, while the autoregressive design enables end-to-end joint optimization through reinforcement fine-tuning. Experiments on R2R-CE and RxR-CE achieve state-of-the-art monocular performance, validating task-driven generative map learning.
Abstract:Vision-Language Navigation (VLN) is a critical task for developing embodied agents that can follow natural language instructions to navigate in complex real-world environments. Recent advances in VLN by large pretrained models have significantly improved generalization and instruction grounding compared to traditional approaches. However, the role of reasoning strategies in navigation-an action-centric, long-horizon task-remains underexplored, despite Chain-of-Thought (CoT) reasoning's demonstrated success in static tasks like visual question answering. To address this gap, we conduct the first systematic evaluation of reasoning strategies for VLN, including No-Think (direct action prediction), Pre-Think (reason before action), and Post-Think (reason after action). Surprisingly, our findings reveal the Inference-time Reasoning Collapse issue, where inference-time reasoning degrades navigation accuracy, highlighting the challenges of integrating reasoning into VLN. Based on this insight, we propose Aux-Think, a framework that trains models to internalize structured reasoning patterns through CoT supervision, while inferring action directly without reasoning in online prediction. To support this framework, we release R2R-CoT-320k, the first Chain-of-Thought annotated dataset for VLN. Extensive experiments show that Aux-Think reduces training effort greatly and achieves the best performance under the same data scale.