Abstract:Large Language Models (LLMs) have shown promise in character imitation, enabling immersive and engaging conversations. However, they often generate content that is irrelevant or inconsistent with a character's background. We attribute these failures to: (1) the inability to accurately recall character-specific knowledge due to entity ambiguity, and (2) a lack of awareness of the character's cognitive boundaries. To address these issues, we propose RoleRAG, a retrieval-based framework that integrates efficient entity disambiguation for knowledge indexing with a boundary-aware retriever for extracting contextually appropriate information from a structured knowledge graph. Experiments on role-playing benchmarks show that RoleRAG's calibrated retrieval helps both general-purpose and role-specific LLMs better align with character knowledge and reduce hallucinated responses.
Abstract:Large Language Models (LLMs) demonstrate impressive general capabilities but often struggle with step-by-step reasoning, especially in complex applications such as games. While retrieval-augmented methods like GraphRAG attempt to bridge this gap through cross-document extraction and indexing, their fragmented entity-relation graphs and overly dense local connectivity hinder the construction of coherent reasoning. In this paper, we propose a novel framework based on Goal-Oriented Graphs (GoGs), where each node represents a goal and its associated attributes, and edges encode logical dependencies between goals. This structure enables explicit retrieval of reasoning paths by first identifying high-level goals and recursively retrieving their subgoals, forming coherent reasoning chains to guide LLM prompting. Our method significantly enhances the reasoning ability of LLMs in game-playing tasks, as demonstrated by extensive experiments on the Minecraft testbed, outperforming GraphRAG and other baselines.
Abstract:Understanding domain-specific theorems often requires more than just text-based reasoning; effective communication through structured visual explanations is crucial for deeper comprehension. While large language models (LLMs) demonstrate strong performance in text-based theorem reasoning, their ability to generate coherent and pedagogically meaningful visual explanations remains an open challenge. In this work, we introduce TheoremExplainAgent, an agentic approach for generating long-form theorem explanation videos (over 5 minutes) using Manim animations. To systematically evaluate multimodal theorem explanations, we propose TheoremExplainBench, a benchmark covering 240 theorems across multiple STEM disciplines, along with 5 automated evaluation metrics. Our results reveal that agentic planning is essential for generating detailed long-form videos, and the o3-mini agent achieves a success rate of 93.8% and an overall score of 0.77. However, our quantitative and qualitative studies show that most of the videos produced exhibit minor issues with visual element layout. Furthermore, multimodal explanations expose deeper reasoning flaws that text-based explanations fail to reveal, highlighting the importance of multimodal explanations.
Abstract:Large Language Models (LLMs) have shown prominent performance in various downstream tasks in which prompt engineering plays a pivotal role in optimizing LLMs' performance. This paper, not as an overview of current prompt engineering methods, aims to highlight the limitation of designing prompts while holding an anthropomorphic assumption that expects LLMs to think like humans. From our review of 35 representative studies, we demonstrate that a goal-oriented prompt formulation, which guides LLMs to follow established human logical thinking, significantly improves the performance of LLMs. Furthermore, We introduce a novel taxonomy that categorizes goal-oriented prompting methods into five interconnected stages and we demonstrate the broad applicability of our framework by summarizing ten applicable tasks. With four future directions proposed, we hope to further emphasize and promote goal-oriented prompt engineering.