Abstract:Humanoid agents are expected to emulate the complex coordination inherent in human social behaviors. However, existing methods are largely confined to single-agent scenarios, overlooking the physically plausible interplay essential for multi-agent interactions. To bridge this gap, we propose InterAgent, the first end-to-end framework for text-driven physics-based multi-agent humanoid control. At its core, we introduce an autoregressive diffusion transformer equipped with multi-stream blocks, which decouples proprioception, exteroception, and action to mitigate cross-modal interference while enabling synergistic coordination. We further propose a novel interaction graph exteroception representation that explicitly captures fine-grained joint-to-joint spatial dependencies to facilitate network learning. Additionally, within it we devise a sparse edge-based attention mechanism that dynamically prunes redundant connections and emphasizes critical inter-agent spatial relations, thereby enhancing the robustness of interaction modeling. Extensive experiments demonstrate that InterAgent consistently outperforms multiple strong baselines, achieving state-of-the-art performance. It enables producing coherent, physically plausible, and semantically faithful multi-agent behaviors from only text prompts. Our code and data will be released to facilitate future research.
Abstract:Human bodily movements convey critical insights into action intentions and cognitive processes, yet existing multimodal systems primarily focused on understanding human motion via language, vision, and audio, which struggle to capture the dynamic forces and torques inherent in 3D motion. Inertial measurement units (IMUs) present a promising alternative, offering lightweight, wearable, and privacy-conscious motion sensing. However, processing of streaming IMU data faces challenges such as wireless transmission instability, sensor noise, and drift, limiting their utility for long-term real-time motion capture (MoCap), and more importantly, online motion analysis. To address these challenges, we introduce Mojito, an intelligent motion agent that integrates inertial sensing with large language models (LLMs) for interactive motion capture and behavioral analysis.




Abstract:Humans naturally interact with both others and the surrounding multiple objects, engaging in various social activities. However, recent advances in modeling human-object interactions mostly focus on perceiving isolated individuals and objects, due to fundamental data scarcity. In this paper, we introduce HOI-M3, a novel large-scale dataset for modeling the interactions of Multiple huMans and Multiple objects. Notably, it provides accurate 3D tracking for both humans and objects from dense RGB and object-mounted IMU inputs, covering 199 sequences and 181M frames of diverse humans and objects under rich activities. With the unique HOI-M3 dataset, we introduce two novel data-driven tasks with companion strong baselines: monocular capture and unstructured generation of multiple human-object interactions. Extensive experiments demonstrate that our dataset is challenging and worthy of further research about multiple human-object interactions and behavior analysis. Our HOI-M3 dataset, corresponding codes, and pre-trained models will be disseminated to the community for future research.