Abstract:Learning from few demonstrations to develop policies robust to variations in robot initial positions and object poses is a problem of significant practical interest in robotics. Compared to imitation learning, which often struggles to generalize from limited samples, reinforcement learning (RL) can autonomously explore to obtain robust behaviors. Training RL agents through direct interaction with the real world is often impractical and unsafe, while building simulation environments requires extensive manual effort, such as designing scenes and crafting task-specific reward functions. To address these challenges, we propose an integrated real-to-sim-to-real pipeline that constructs simulation environments based on expert demonstrations by identifying scene objects from images and retrieving their corresponding 3D models from existing libraries. We introduce a projection-based reward model for RL policy training that is supervised by a vision-language model (VLM) using human-guided object projection relationships as prompts, with the policy further fine-tuned using expert demonstrations. In general, our work focuses on the construction of simulation environments and RL-based policy training, ultimately enabling the deployment of reliable robotic control policies in real-world scenarios.
Abstract:Large Language Models (LLMs) aligned with human feedback have recently garnered significant attention. However, it remains vulnerable to jailbreak attacks, where adversaries manipulate prompts to induce harmful outputs. Exploring jailbreak attacks enables us to investigate the vulnerabilities of LLMs and further guides us in enhancing their security. Unfortunately, existing techniques mainly rely on handcrafted templates or generated-based optimization, posing challenges in scalability, efficiency and universality. To address these issues, we present JailPO, a novel black-box jailbreak framework to examine LLM alignment. For scalability and universality, JailPO meticulously trains attack models to automatically generate covert jailbreak prompts. Furthermore, we introduce a preference optimization-based attack method to enhance the jailbreak effectiveness, thereby improving efficiency. To analyze model vulnerabilities, we provide three flexible jailbreak patterns. Extensive experiments demonstrate that JailPO not only automates the attack process while maintaining effectiveness but also exhibits superior performance in efficiency, universality, and robustness against defenses compared to baselines. Additionally, our analysis of the three JailPO patterns reveals that attacks based on complex templates exhibit higher attack strength, whereas covert question transformations elicit riskier responses and are more likely to bypass defense mechanisms.