Abstract:The reinforcement fine-tuning area is undergoing an explosion papers largely on optimizing design choices. Though performance gains are often claimed, inconsistent conclusions also arise from time to time, making the progress illusive. Reflecting on this illusion, we still lack principled answers to two fundamental questions: 1) what is the role of each design choice? 2) which ones are critical? This paper aims to shed light on them. The underlying challenge is that design choices are entangled together, making their contribution to learning and generalization difficult to attribute. To address this challenge, we first construct a minimalist baseline for disentangling factors: one rollout per query in each round, the outcome reward serving as the training signal without any advantage trick, and a batch size of thirty-two. This baseline connects to batched contextual bandit learning, which facilitates experimental analysis. Centering around this baseline, we design an experiment pipeline, examining the marginal gains of factors like advantage, number of rollouts, etc. Experiments on three base models and two datasets, not only reveal new understanding on the role of various design choices on learning and generalization dynamics, but also identify critical ones that deserve more effort.
Abstract:A large number of heuristics have been proposed to optimize the reinforcement fine-tuning of LLMs. However, inconsistent claims are made from time to time, making this area elusive. Reflecting on this situation, two fundamental questions still lack a clear understanding: 1) what is the role of each optimizing choice? 2) which ones are the bottlenecks? This paper aims to shed light on them, and it faces the challenge of several entangled confounding factors in the fine-tuning process. To tackle this challenge, we propose a bottom-up experiment pipeline. The bottom layer is composed of a minimalist configuration: one training data, one rollout per round and the reward directly serve as the learning signal without advantage function design. This minimalist configuration connects to multi-armed bandit learning with extremely large discrete action space, which offers theories to corroborate the experiment findings. The up procedure of the experiment pipeline expanding the minimalist configuration layer by layer, examining the role of each design choice. Experimental results on three LLMs and two reasoning datasets not only reveal new understanding of the design choice but also yield essential insights to shape the area.