Abstract:A central goal of cognitive modeling is to develop models that not only predict human behavior but also provide insight into the underlying cognitive mechanisms. While neural network models trained on large-scale behavioral data often achieve strong predictive performance, they typically fall short in offering interpretable explanations of the cognitive processes they capture. In this work, we explore the potential of pretrained large language models (LLMs) to serve as dual-purpose cognitive models--capable of both accurate prediction and interpretable explanation in natural language. Specifically, we employ reinforcement learning with outcome-based rewards to guide LLMs toward generating explicit reasoning traces for explaining human risky choices. Our findings demonstrate that this approach produces high-quality explanations alongside strong quantitative predictions of human decisions.
Abstract:Changing the behavior of large language models (LLMs) can be as straightforward as editing the Transformer's residual streams using appropriately constructed "steering vectors." These modifications to internal neural activations, a form of representation engineering, offer an effective and targeted means of influencing model behavior without retraining or fine-tuning the model. But how can such steering vectors be systematically identified? We propose a principled approach for uncovering steering vectors by aligning latent representations elicited through behavioral methods (specifically, Markov chain Monte Carlo with LLMs) with their neural counterparts. To evaluate this approach, we focus on extracting latent risk preferences from LLMs and steering their risk-related outputs using the aligned representations as steering vectors. We show that the resulting steering vectors successfully and reliably modulate LLM outputs in line with the targeted behavior.
Abstract:Rational decision-making under uncertainty requires coherent degrees of belief in events. However, event probabilities generated by Large Language Models (LLMs) have been shown to exhibit incoherence, violating the axioms of probability theory. This raises the question of whether coherent event probabilities can be recovered from the embeddings used by the models. If so, those derived probabilities could be used as more accurate estimates in events involving uncertainty. To explore this question, we propose enforcing axiomatic constraints, such as the additive rule of probability theory, in the latent space learned by an extended variational autoencoder (VAE) applied to LLM embeddings. This approach enables event probabilities to naturally emerge in the latent space as the VAE learns to both reconstruct the original embeddings and predict the embeddings of semantically related events. We evaluate our method on complementary events (i.e., event A and its complement, event not-A), where the true probabilities of the two events must sum to 1. Experiment results on open-weight language models demonstrate that probabilities recovered from embeddings exhibit greater coherence than those directly reported by the corresponding models and align closely with the true probabilities.
Abstract:Modern artificial intelligence systems, such as large language models, are increasingly powerful but also increasingly hard to understand. Recognizing this problem as analogous to the historical difficulties in understanding the human mind, we argue that methods developed in cognitive science can be useful for understanding large language models. We propose a framework for applying these methods based on Marr's three levels of analysis. By revisiting established cognitive science techniques relevant to each level and illustrating their potential to yield insights into the behavior and internal organization of large language models, we aim to provide a toolkit for making sense of these new kinds of minds.
Abstract:Understanding how people behave in strategic settings--where they make decisions based on their expectations about the behavior of others--is a long-standing problem in the behavioral sciences. We conduct the largest study to date of strategic decision-making in the context of initial play in two-player matrix games, analyzing over 90,000 human decisions across more than 2,400 procedurally generated games that span a much wider space than previous datasets. We show that a deep neural network trained on these data predicts people's choices better than leading theories of strategic behavior, indicating that there is systematic variation that is not explained by those theories. We then modify the network to produce a new, interpretable behavioral model, revealing what the original network learned about people: their ability to optimally respond and their capacity to reason about others are dependent on the complexity of individual games. This context-dependence is critical in explaining deviations from the rational Nash equilibrium, response times, and uncertainty in strategic decisions. More broadly, our results demonstrate how machine learning can be applied beyond prediction to further help generate novel explanations of complex human behavior.
Abstract:As Large Language Models (LLMs) are increasingly deployed in real-world settings, understanding the knowledge they implicitly use when making decisions is critical. One way to capture this knowledge is in the form of Bayesian prior distributions. We develop a prompt-based workflow for eliciting prior distributions from LLMs. Our approach is based on iterated learning, a Markov chain Monte Carlo method in which successive inferences are chained in a way that supports sampling from the prior distribution. We validated our method in settings where iterated learning has previously been used to estimate the priors of human participants -- causal learning, proportion estimation, and predicting everyday quantities. We found that priors elicited from GPT-4 qualitatively align with human priors in these settings. We then used the same method to elicit priors from GPT-4 for a variety of speculative events, such as the timing of the development of superhuman AI.
Abstract:The observed similarities in the behavior of humans and Large Language Models (LLMs) have prompted researchers to consider the potential of using LLMs as models of human cognition. However, several significant challenges must be addressed before LLMs can be legitimately regarded as cognitive models. For instance, LLMs are trained on far more data than humans typically encounter, and may have been directly trained on human data in specific cognitive tasks or aligned with human preferences. Consequently, the origins of these behavioral similarities are not well understood. In this paper, we propose a novel way to enhance the utility of LLMs as cognitive models. This approach involves (i) leveraging computationally equivalent tasks that both an LLM and a rational agent need to master for solving a cognitive problem and (ii) examining the specific task distributions required for an LLM to exhibit human-like behaviors. We apply this approach to decision-making -- specifically risky and intertemporal choice -- where the key computationally equivalent task is the arithmetic of expected value calculations. We show that an LLM pretrained on an ecologically valid arithmetic dataset, which we call Arithmetic-GPT, predicts human behavior better than many traditional cognitive models. Pretraining LLMs on ecologically valid arithmetic datasets is sufficient to produce a strong correspondence between these models and human decision-making. Our results also suggest that LLMs used as cognitive models should be carefully investigated via ablation studies of the pretraining data.
Abstract:Autoregressive Large Language Models (LLMs) trained for next-word prediction have demonstrated remarkable proficiency at producing coherent text. But are they equally adept at forming coherent probability judgments? We use probabilistic identities and repeated judgments to assess the coherence of probability judgments made by LLMs. Our results show that the judgments produced by these models are often incoherent, displaying human-like systematic deviations from the rules of probability theory. Moreover, when prompted to judge the same event, the mean-variance relationship of probability judgments produced by LLMs shows an inverted-U-shaped like that seen in humans. We propose that these deviations from rationality can be explained by linking autoregressive LLMs to implicit Bayesian inference and drawing parallels with the Bayesian Sampler model of human probability judgments.
Abstract:Simulating sampling algorithms with people has proven a useful method for efficiently probing and understanding their mental representations. We propose that the same methods can be used to study the representations of Large Language Models (LLMs). While one can always directly prompt either humans or LLMs to disclose their mental representations introspectively, we show that increased efficiency can be achieved by using LLMs as elements of a sampling algorithm. We explore the extent to which we recover human-like representations when LLMs are interrogated with Direct Sampling and Markov chain Monte Carlo (MCMC). We found a significant increase in efficiency and performance using adaptive sampling algorithms based on MCMC. We also highlight the potential of our method to yield a more general method of conducting Bayesian inference \textit{with} LLMs.
Abstract:Large language models (LLMs) can produce long, coherent passages of text, suggesting that LLMs, although trained on next-word prediction, must represent the latent structure that characterizes a document. Prior work has found that internal representations of LLMs encode one aspect of latent structure, namely syntax; here we investigate a complementary aspect, namely the document's topic structure. We motivate the hypothesis that LLMs capture topic structure by connecting LLM optimization to implicit Bayesian inference. De Finetti's theorem shows that exchangeable probability distributions can be represented as a mixture with respect to a latent generating distribution. Although text is not exchangeable at the level of syntax, exchangeability is a reasonable starting assumption for topic structure. We thus hypothesize that predicting the next token in text will lead LLMs to recover latent topic distributions. We examine this hypothesis using Latent Dirichlet Allocation (LDA), an exchangeable probabilistic topic model, as a target, and we show that the representations formed by LLMs encode both the topics used to generate synthetic data and those used to explain natural corpus data.