Abstract:Existing unstructured data analytics systems rely on experts to write code and manage complex analysis workflows, making them both expensive and time-consuming. To address these challenges, we introduce AgenticData, an innovative agentic data analytics system that allows users to simply pose natural language (NL) questions while autonomously analyzing data sources across multiple domains, including both unstructured and structured data. First, AgenticData employs a feedback-driven planning technique that automatically converts an NL query into a semantic plan composed of relational and semantic operators. We propose a multi-agent collaboration strategy by utilizing a data profiling agent for discovering relevant data, a semantic cross-validation agent for iterative optimization based on feedback, and a smart memory agent for maintaining short-term context and long-term knowledge. Second, we propose a semantic optimization model to refine and execute semantic plans effectively. Our system, AgenticData, has been tested using three benchmarks. Experimental results showed that AgenticData achieved superior accuracy on both easy and difficult tasks, significantly outperforming state-of-the-art methods.
Abstract:The ionic bonding across the lattice and ordered microscopic structures endow crystals with unique symmetry and determine their macroscopic properties. Unconventional crystals, in particular, exhibit non-traditional lattice structures or possess exotic physical properties, making them intriguing subjects for investigation. Therefore, to accurately predict the physical and chemical properties of crystals, it is crucial to consider long-range orders. While GNN excels at capturing the local environment of atoms in crystals, they often face challenges in effectively capturing longer-ranged interactions due to their limited depth. In this paper, we propose CrysToGraph ($\textbf{Crys}$tals with $\textbf{T}$ransformers $\textbf{o}$n $\textbf{Graph}$s), a novel transformer-based geometric graph network designed specifically for unconventional crystalline systems, and UnconvBench, a comprehensive benchmark to evaluate models' predictive performance on unconventional crystal materials such as defected crystals, low-dimension crystals and MOF. CrysToGraph effectively captures short-range interactions with transformer-based graph convolution blocks as well as long-range interactions with graph-wise transformer blocks. CrysToGraph proofs its effectiveness in modelling unconventional crystal materials in multiple tasks, and moreover, it outperforms most existing methods, achieving new state-of-the-art results on the benchmarks of both unconventional crystals and traditional crystals.