Abstract:Predicting consumers' purchasing behaviors is critical for targeted advertisement and sales promotion in e-commerce. Human faces are an invaluable source of information for gaining insights into consumer personality and behavioral traits. However, consumer's faces are largely unexplored in previous research, and the existing face-related studies focus on high-level features such as personality traits while neglecting the business significance of learning from facial data. We propose to predict consumers' purchases based on their facial features and purchasing histories. We design a semi-supervised model based on a hierarchical embedding network to extract high-level features of consumers and to predict the top-$N$ purchase destinations of a consumer. Our experimental results on a real-world dataset demonstrate the positive effect of incorporating facial information in predicting consumers' purchasing behaviors.
Abstract:Most current studies on survey analysis and risk tolerance modelling lack professional knowledge and domain-specific models. Given the effectiveness of generative adversarial learning in cross-domain information, we design an Asymmetric cross-Domain Generative Adversarial Network (ADGAN) for domain scale inequality. ADGAN utilizes the information-sufficient domain to provide extra information to improve the representation learning on the information-insufficient domain via domain alignment. We provide data analysis and user model on two data sources: Consumer Consumption Information and Survey Information. We further test ADGAN on a real-world dataset with view embedding structures and show ADGAN can better deal with the class imbalance and unqualified data space than state-of-the-art, demonstrating the effectiveness of leveraging asymmetrical domain information.