Abstract:Split computing distributes deep neural network inference between resource-constrained edge devices and cloud servers but faces significant communication bottlenecks when transmitting intermediate features. To this end, in this paper, we propose a novel lightweight compression framework that leverages Range Asymmetric Numeral Systems (rANS) encoding with asymmetric integer quantization and sparse tensor representation to reduce transmission overhead dramatically. Specifically, our approach combines asymmetric integer quantization with a sparse representation technique, eliminating the need for complex probability modeling or network modifications. The key contributions include: (1) a distribution-agnostic compression pipeline that exploits inherent tensor sparsity to achieve bandwidth reduction with minimal computational overhead; (2) an approximate theoretical model that optimizes tensor reshaping dimensions to maximize compression efficiency; and (3) a GPU-accelerated implementation with sub-millisecond encoding/decoding latency. Extensive evaluations across diverse neural architectures (ResNet, VGG16, MobileNetV2, SwinT, DenseNet121, EfficientNetB0) demonstrate that the proposed framework consistently maintains near-baseline accuracy across CIFAR100 and ImageNet benchmarks. Moreover, we validated the framework's effectiveness on advanced natural language processing tasks by employing Llama2 7B and 13B on standard benchmarks such as MMLU, HellaSwag, ARC, PIQA, Winogrande, BoolQ, and OpenBookQA, demonstrating its broad applicability beyond computer vision. Furthermore, this method addresses a fundamental bottleneck in deploying sophisticated artificial intelligence systems in bandwidth-constrained environments without compromising model performance.
Abstract:Large language models (LLMs) have achieved near-human performance across diverse reasoning tasks, yet their deployment on resource-constrained Internet-of-Things (IoT) devices remains impractical due to massive parameter footprints and memory-intensive autoregressive decoding. While split computing offers a promising solution by partitioning model execution between edge devices and cloud servers, existing approaches fail to address the unique challenges of autoregressive inference, particularly the iterative token generation process and expanding key-value (KV) cache requirements. This work introduces the first autoregressive-aware split computing framework designed explicitly for LLM deployment on edge devices. Our approach makes three key contributions. First, we develop one-point split compression (OPSC), a mixed-precision quantization scheme that prevents out-of-memory failures by strategically partitioning models into front-end and back-end segments with different precision levels. Second, we propose a two-stage intermediate compression pipeline that combines threshold splitting (TS) and token-wise adaptive bit quantization (TAB-Q) to preserve accuracy-critical activations while dramatically reducing communication overhead. Third, we formulate a unified optimization framework that jointly selects optimal split points, quantization settings, and sequence lengths to satisfy strict memory and latency constraints. Extensive evaluations across diverse LLMs and hardware platforms demonstrate superior performance compared to state-of-the-art quantization methods, including SmoothQuant, OmniQuant, and Atom. The framework achieves a 1.49 inference speedup and significant communication overhead reduction while maintaining or improving model accuracy.




Abstract:Diffusion models have emerged as state-of-the-art in image generation, but their practical deployment is hindered by the significant computational cost of their iterative denoising process. While existing caching techniques can accelerate inference, they often create a challenging trade-off between speed and fidelity, suffering from quality degradation and high computational overhead. To address these limitations, we introduce H2-Cache, a novel hierarchical caching mechanism designed for modern generative diffusion model architectures. Our method is founded on the key insight that the denoising process can be functionally separated into a structure-defining stage and a detail-refining stage. H2-cache leverages this by employing a dual-threshold system, using independent thresholds to selectively cache each stage. To ensure the efficiency of our dual-check approach, we introduce pooled feature summarization (PFS), a lightweight technique for robust and fast similarity estimation. Extensive experiments on the Flux architecture demonstrate that H2-cache achieves significant acceleration (up to 5.08x) while maintaining image quality nearly identical to the baseline, quantitatively and qualitatively outperforming existing caching methods. Our work presents a robust and practical solution that effectively resolves the speed-quality dilemma, significantly lowering the barrier for the real-world application of high-fidelity diffusion models. Source code is available at https://github.com/Bluear7878/H2-cache-A-Hierarchical-Dual-Stage-Cache.
Abstract:Image super-resolution(SR) is fundamental to many vision system-from surveillance and autonomy to document analysis and retail analytics-because recovering high-frequency details, especially scene-text, enables reliable downstream perception. Scene-text, i.e., text embedded in natural images such as signs, product labels, and storefronts, often carries the most actionable information; when characters are blurred or hallucinated, optical character recognition(OCR) and subsequent decisions fail even if the rest of the image appears sharp. Yet previous SR research has often been tuned to distortion (PSNR/SSIM) or learned perceptual metrics (LIPIS, MANIQA, CLIP-IQA, MUSIQ) that are largely insensitive to character-level errors. Furthermore, studies that do address text SR often focus on simplified benchmarks with isolated characters, overlooking the challenges of text within complex natural scenes. As a result, scene-text is effectively treated as generic texture. For SR to be effective in practical deployments, it is therefore essential to explicitly optimize for both text legibility and perceptual quality. We present GLYPH-SR, a vision-language-guided diffusion framework that aims to achieve both objectives jointly. GLYPH-SR utilizes a Text-SR Fusion ControlNet(TS-ControlNet) guided by OCR data, and a ping-pong scheduler that alternates between text- and scene-centric guidance. To enable targeted text restoration, we train these components on a synthetic corpus while keeping the main SR branch frozen. Across SVT, SCUT-CTW1500, and CUTE80 at x4, and x8, GLYPH-SR improves OCR F1 by up to +15.18 percentage points over diffusion/GAN baseline (SVT x8, OpenOCR) while maintaining competitive MANIQA, CLIP-IQA, and MUSIQ. GLYPH-SR is designed to satisfy both objectives simultaneously-high readability and high visual realism-delivering SR that looks right and reds right.




Abstract:The SoccerNet 2024 challenges represent the fourth annual video understanding challenges organized by the SoccerNet team. These challenges aim to advance research across multiple themes in football, including broadcast video understanding, field understanding, and player understanding. This year, the challenges encompass four vision-based tasks. (1) Ball Action Spotting, focusing on precisely localizing when and which soccer actions related to the ball occur, (2) Dense Video Captioning, focusing on describing the broadcast with natural language and anchored timestamps, (3) Multi-View Foul Recognition, a novel task focusing on analyzing multiple viewpoints of a potential foul incident to classify whether a foul occurred and assess its severity, (4) Game State Reconstruction, another novel task focusing on reconstructing the game state from broadcast videos onto a 2D top-view map of the field. Detailed information about the tasks, challenges, and leaderboards can be found at https://www.soccer-net.org, with baselines and development kits available at https://github.com/SoccerNet.



Abstract:Neural networks have shown high successful performance in a wide range of tasks, but further studies are needed to improve its performance. We analyze the approximation error of the specific neural network architecture with a local connection and higher application than one with the full connection because the local-connected network can be used to explain diverse neural networks such as CNNs. Our error estimate depends on two parameters: one controlling the depth of the hidden layer, and the other, the width of the hidden layers.