Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Abstract:In continual learning, catastrophic forgetting is affected by multiple aspects of the tasks. Previous works have analyzed separately how forgetting is affected by either task similarity or overparameterization. In contrast, our paper examines how task similarity and overparameterization jointly affect forgetting in an analyzable model. Specifically, we focus on two-task continual linear regression, where the second task is a random orthogonal transformation of an arbitrary first task (an abstraction of random permutation tasks). We derive an exact analytical expression for the expected forgetting - and uncover a nuanced pattern. In highly overparameterized models, intermediate task similarity causes the most forgetting. However, near the interpolation threshold, forgetting decreases monotonically with the expected task similarity. We validate our findings with linear regression on synthetic data, and with neural networks on established permutation task benchmarks.

Via

Authors:Itay Evron, Edward Moroshko, Gon Buzaglo, Maroun Khriesh, Badea Marjieh, Nathan Srebro, Daniel Soudry

Figures and Tables:

Abstract:We analyze continual learning on a sequence of separable linear classification tasks with binary labels. We show theoretically that learning with weak regularization reduces to solving a sequential max-margin problem, corresponding to a special case of the Projection Onto Convex Sets (POCS) framework. We then develop upper bounds on the forgetting and other quantities of interest under various settings with recurring tasks, including cyclic and random orderings of tasks. We discuss several practical implications to popular training practices like regularization scheduling and weighting. We point out several theoretical differences between our continual classification setting and a recently studied continual regression setting.

Via

Figures and Tables:

Abstract:Error-correcting codes (ECC) are used to reduce multiclass classification tasks to multiple binary classification subproblems. In ECC, classes are represented by the rows of a binary matrix, corresponding to codewords in a codebook. Codebooks are commonly either predefined or problem dependent. Given predefined codebooks, codeword-to-class assignments are traditionally overlooked, and codewords are implicitly assigned to classes arbitrarily. Our paper shows that these assignments play a major role in the performance of ECC. Specifically, we examine similarity-preserving assignments, where similar codewords are assigned to similar classes. Addressing a controversy in existing literature, our extensive experiments confirm that similarity-preserving assignments induce easier subproblems and are superior to other assignment policies in terms of their generalization performance. We find that similarity-preserving assignments make predefined codebooks become problem-dependent, without altering other favorable codebook properties. Finally, we show that our findings can improve predefined codebooks dedicated to extreme classification.

Via

Figures and Tables:

Abstract:To better understand catastrophic forgetting, we study fitting an overparameterized linear model to a sequence of tasks with different input distributions. We analyze how much the model forgets the true labels of earlier tasks after training on subsequent tasks, obtaining exact expressions and bounds. We establish connections between continual learning in the linear setting and two other research areas: alternating projections and the Kaczmarz method. In specific settings, we highlight differences between forgetting and convergence to the offline solution as studied in those areas. In particular, when T tasks in d dimensions are presented cyclically for k iterations, we prove an upper bound of T^2 * min{1/sqrt(k), d/k} on the forgetting. This stands in contrast to the convergence to the offline solution, which can be arbitrarily slow according to existing alternating projection results. We further show that the T^2 factor can be lifted when tasks are presented in a random ordering.

Via

Authors:Yochai Zur, Chaim Baskin, Evgenii Zheltonozhskii, Brian Chmiel, Itay Evron, Alex M. Bronstein, Avi Mendelson

Figures and Tables:

Abstract:Recently, deep learning has become a de facto standard in machine learning with convolutional neural networks (CNNs) demonstrating spectacular success on a wide variety of tasks. However, CNNs are typically very demanding computationally at inference time. One of the ways to alleviate this burden on certain hardware platforms is quantization relying on the use of low-precision arithmetic representation for the weights and the activations. Another popular method is the pruning of the number of filters in each layer. While mainstream deep learning methods train the neural networks weights while keeping the network architecture fixed, the emerging neural architecture search (NAS) techniques make the latter also amenable to training. In this paper, we formulate optimal arithmetic bit length allocation and neural network pruning as a NAS problem, searching for the configurations satisfying a computational complexity budget while maximizing the accuracy. We use a differentiable search method based on the continuous relaxation of the search space proposed by Liu et al. (arXiv:1806.09055). We show, by grid search, that heterogeneous quantized networks suffer from a high variance which renders the benefit of the search questionable. For pruning, improvement over homogeneous cases is possible, but it is still challenging to find those configurations with the proposed method. The code is publicly available at https://github.com/yochaiz/Slimmable and https://github.com/yochaiz/darts-UNIQ

Via

Figures and Tables:

Abstract:We consider the question of what functions can be captured by ReLU networks with an unbounded number of units (infinite width), but where the overall network Euclidean norm (sum of squares of all weights in the system, except for an unregularized bias term for each unit) is bounded; or equivalently what is the minimal norm required to approximate a given function. For functions $f : \mathbb R \rightarrow \mathbb R$ and a single hidden layer, we show that the minimal network norm for representing $f$ is $\max(\int |f''(x)| dx, |f'(-\infty) + f'(+\infty)|)$, and hence the minimal norm fit for a sample is given by a linear spline interpolation.

Via

Figures and Tables:

Abstract:In extreme classification problems, learning algorithms are required to map instances to labels from an extremely large label set. We build on a recent extreme classification framework with logarithmic time and space, and on a general approach for error correcting output coding (ECOC), and introduce a flexible and efficient approach accompanied by bounds. Our framework employs output codes induced by graphs, and offers a tradeoff between accuracy and model size. We show how to find the sweet spot of this tradeoff using only the training data. Our experimental study demonstrates the validity of our assumptions and claims, and shows the superiority of our method compared with state-of-the-art algorithms.

Via