Abstract:We study Gaussian sparse estimation tasks in Huber's contamination model with a focus on mean estimation, PCA, and linear regression. For each of these tasks, we give the first sample and computationally efficient robust estimators with optimal error guarantees, within constant factors. All prior efficient algorithms for these tasks incur quantitatively suboptimal error. Concretely, for Gaussian robust $k$-sparse mean estimation on $\mathbb{R}^d$ with corruption rate $\epsilon>0$, our algorithm has sample complexity $(k^2/\epsilon^2)\mathrm{polylog}(d/\epsilon)$, runs in sample polynomial time, and approximates the target mean within $\ell_2$-error $O(\epsilon)$. Previous efficient algorithms inherently incur error $\Omega(\epsilon \sqrt{\log(1/\epsilon)})$. At the technical level, we develop a novel multidimensional filtering method in the sparse regime that may find other applications.
Abstract:Finding an approximate second-order stationary point (SOSP) is a well-studied and fundamental problem in stochastic nonconvex optimization with many applications in machine learning. However, this problem is poorly understood in the presence of outliers, limiting the use of existing nonconvex algorithms in adversarial settings. In this paper, we study the problem of finding SOSPs in the strong contamination model, where a constant fraction of datapoints are arbitrarily corrupted. We introduce a general framework for efficiently finding an approximate SOSP with \emph{dimension-independent} accuracy guarantees, using $\widetilde{O}({D^2}/{\epsilon})$ samples where $D$ is the ambient dimension and $\epsilon$ is the fraction of corrupted datapoints. As a concrete application of our framework, we apply it to the problem of low rank matrix sensing, developing efficient and provably robust algorithms that can tolerate corruptions in both the sensing matrices and the measurements. In addition, we establish a Statistical Query lower bound providing evidence that the quadratic dependence on $D$ in the sample complexity is necessary for computationally efficient algorithms.
Abstract:We study the complexity of Non-Gaussian Component Analysis (NGCA) in the Statistical Query (SQ) model. Prior work developed a general methodology to prove SQ lower bounds for this task that have been applicable to a wide range of contexts. In particular, it was known that for any univariate distribution $A$ satisfying certain conditions, distinguishing between a standard multivariate Gaussian and a distribution that behaves like $A$ in a random hidden direction and like a standard Gaussian in the orthogonal complement, is SQ-hard. The required conditions were that (1) $A$ matches many low-order moments with the standard univariate Gaussian, and (2) the chi-squared norm of $A$ with respect to the standard Gaussian is finite. While the moment-matching condition is necessary for hardness, the chi-squared condition was only required for technical reasons. In this work, we establish that the latter condition is indeed not necessary. In particular, we prove near-optimal SQ lower bounds for NGCA under the moment-matching condition only. Our result naturally generalizes to the setting of a hidden subspace. Leveraging our general SQ lower bound, we obtain near-optimal SQ lower bounds for a range of concrete estimation tasks where existing techniques provide sub-optimal or even vacuous guarantees.
Abstract:We study the problem of estimating the mean of an identity covariance Gaussian in the truncated setting, in the regime when the truncation set comes from a low-complexity family $\mathcal{C}$ of sets. Specifically, for a fixed but unknown truncation set $S \subseteq \mathbb{R}^d$, we are given access to samples from the distribution $\mathcal{N}(\boldsymbol{ \mu}, \mathbf{ I})$ truncated to the set $S$. The goal is to estimate $\boldsymbol\mu$ within accuracy $\epsilon>0$ in $\ell_2$-norm. Our main result is a Statistical Query (SQ) lower bound suggesting a super-polynomial information-computation gap for this task. In more detail, we show that the complexity of any SQ algorithm for this problem is $d^{\mathrm{poly}(1/\epsilon)}$, even when the class $\mathcal{C}$ is simple so that $\mathrm{poly}(d/\epsilon)$ samples information-theoretically suffice. Concretely, our SQ lower bound applies when $\mathcal{C}$ is a union of a bounded number of rectangles whose VC dimension and Gaussian surface are small. As a corollary of our construction, it also follows that the complexity of the previously known algorithm for this task is qualitatively best possible.
Abstract:We study the problem of learning Single-Index Models under the $L_2^2$ loss in the agnostic model. We give an efficient learning algorithm, achieving a constant factor approximation to the optimal loss, that succeeds under a range of distributions (including log-concave distributions) and a broad class of monotone and Lipschitz link functions. This is the first efficient constant factor approximate agnostic learner, even for Gaussian data and for any nontrivial class of link functions. Prior work for the case of unknown link function either works in the realizable setting or does not attain constant factor approximation. The main technical ingredient enabling our algorithm and analysis is a novel notion of a local error bound in optimization that we term alignment sharpness and that may be of broader interest.
Abstract:Using unlabeled data to regularize the machine learning models has demonstrated promise for improving safety and reliability in detecting out-of-distribution (OOD) data. Harnessing the power of unlabeled in-the-wild data is non-trivial due to the heterogeneity of both in-distribution (ID) and OOD data. This lack of a clean set of OOD samples poses significant challenges in learning an optimal OOD classifier. Currently, there is a lack of research on formally understanding how unlabeled data helps OOD detection. This paper bridges the gap by introducing a new learning framework SAL (Separate And Learn) that offers both strong theoretical guarantees and empirical effectiveness. The framework separates candidate outliers from the unlabeled data and then trains an OOD classifier using the candidate outliers and the labeled ID data. Theoretically, we provide rigorous error bounds from the lens of separability and learnability, formally justifying the two components in our algorithm. Our theory shows that SAL can separate the candidate outliers with small error rates, which leads to a generalization guarantee for the learned OOD classifier. Empirically, SAL achieves state-of-the-art performance on common benchmarks, reinforcing our theoretical insights. Code is publicly available at https://github.com/deeplearning-wisc/sal.
Abstract:We study the power of query access for the task of agnostic learning under the Gaussian distribution. In the agnostic model, no assumptions are made on the labels and the goal is to compute a hypothesis that is competitive with the {\em best-fit} function in a known class, i.e., it achieves error $\mathrm{opt}+\epsilon$, where $\mathrm{opt}$ is the error of the best function in the class. We focus on a general family of Multi-Index Models (MIMs), which are $d$-variate functions that depend only on few relevant directions, i.e., have the form $g(\mathbf{W} \mathbf{x})$ for an unknown link function $g$ and a $k \times d$ matrix $\mathbf{W}$. Multi-index models cover a wide range of commonly studied function classes, including constant-depth neural networks with ReLU activations, and intersections of halfspaces. Our main result shows that query access gives significant runtime improvements over random examples for agnostically learning MIMs. Under standard regularity assumptions for the link function (namely, bounded variation or surface area), we give an agnostic query learner for MIMs with complexity $O(k)^{\mathrm{poly}(1/\epsilon)} \; \mathrm{poly}(d) $. In contrast, algorithms that rely only on random examples inherently require $d^{\mathrm{poly}(1/\epsilon)}$ samples and runtime, even for the basic problem of agnostically learning a single ReLU or a halfspace. Our algorithmic result establishes a strong computational separation between the agnostic PAC and the agnostic PAC+Query models under the Gaussian distribution. Prior to our work, no such separation was known -- even for the special case of agnostically learning a single halfspace, for which it was an open problem first posed by Feldman. Our results are enabled by a general dimension-reduction technique that leverages query access to estimate gradients of (a smoothed version of) the underlying label function.
Abstract:We study the clustering problem for mixtures of bounded covariance distributions, under a fine-grained separation assumption. Specifically, given samples from a $k$-component mixture distribution $D = \sum_{i =1}^k w_i P_i$, where each $w_i \ge \alpha$ for some known parameter $\alpha$, and each $P_i$ has unknown covariance $\Sigma_i \preceq \sigma^2_i \cdot I_d$ for some unknown $\sigma_i$, the goal is to cluster the samples assuming a pairwise mean separation in the order of $(\sigma_i+\sigma_j)/\sqrt{\alpha}$ between every pair of components $P_i$ and $P_j$. Our contributions are as follows: For the special case of nearly uniform mixtures, we give the first poly-time algorithm for this clustering task. Prior work either required separation scaling with the maximum cluster standard deviation (i.e. $\max_i \sigma_i$) [DKK+22b] or required both additional structural assumptions and mean separation scaling as a large degree polynomial in $1/\alpha$ [BKK22]. For general-weight mixtures, we point out that accurate clustering is information-theoretically impossible under our fine-grained mean separation assumptions. We introduce the notion of a clustering refinement -- a list of not-too-small subsets satisfying a similar separation, and which can be merged into a clustering approximating the ground truth -- and show that it is possible to efficiently compute an accurate clustering refinement of the samples. Furthermore, under a variant of the "no large sub-cluster'' condition from in prior work [BKK22], we show that our algorithm outputs an accurate clustering, not just a refinement, even for general-weight mixtures. As a corollary, we obtain efficient clustering algorithms for mixtures of well-conditioned high-dimensional log-concave distributions. Moreover, our algorithm is robust to $\Omega(\alpha)$-fraction of adversarial outliers.
Abstract:We study the fundamental problems of Gaussian mean estimation and linear regression with Gaussian covariates in the presence of Huber contamination. Our main contribution is the design of the first sample near-optimal and almost linear-time algorithms with optimal error guarantees for both of these problems. Specifically, for Gaussian robust mean estimation on $\mathbb{R}^d$ with contamination parameter $\epsilon \in (0, \epsilon_0)$ for a small absolute constant $\epsilon_0$, we give an algorithm with sample complexity $n = \tilde{O}(d/\epsilon^2)$ and almost linear runtime that approximates the target mean within $\ell_2$-error $O(\epsilon)$. This improves on prior work that achieved this error guarantee with polynomially suboptimal sample and time complexity. For robust linear regression, we give the first algorithm with sample complexity $n = \tilde{O}(d/\epsilon^2)$ and almost linear runtime that approximates the target regressor within $\ell_2$-error $O(\epsilon)$. This is the first polynomial sample and time algorithm achieving the optimal error guarantee, answering an open question in the literature. At the technical level, we develop a methodology that yields almost-linear time algorithms for multi-directional filtering that may be of broader interest.
Abstract:We investigate the statistical task of closeness (or equivalence) testing for multidimensional distributions. Specifically, given sample access to two unknown distributions $\mathbf p, \mathbf q$ on $\mathbb R^d$, we want to distinguish between the case that $\mathbf p=\mathbf q$ versus $\|\mathbf p-\mathbf q\|_{A_k} > \epsilon$, where $\|\mathbf p-\mathbf q\|_{A_k}$ denotes the generalized ${A}_k$ distance between $\mathbf p$ and $\mathbf q$ -- measuring the maximum discrepancy between the distributions over any collection of $k$ disjoint, axis-aligned rectangles. Our main result is the first closeness tester for this problem with {\em sub-learning} sample complexity in any fixed dimension and a nearly-matching sample complexity lower bound. In more detail, we provide a computationally efficient closeness tester with sample complexity $O\left((k^{6/7}/ \mathrm{poly}_d(\epsilon)) \log^d(k)\right)$. On the lower bound side, we establish a qualitatively matching sample complexity lower bound of $\Omega(k^{6/7}/\mathrm{poly}(\epsilon))$, even for $d=2$. These sample complexity bounds are surprising because the sample complexity of the problem in the univariate setting is $\Theta(k^{4/5}/\mathrm{poly}(\epsilon))$. This has the interesting consequence that the jump from one to two dimensions leads to a substantial increase in sample complexity, while increases beyond that do not. As a corollary of our general $A_k$ tester, we obtain $d_{\mathrm TV}$-closeness testers for pairs of $k$-histograms on $\mathbb R^d$ over a common unknown partition, and pairs of uniform distributions supported on the union of $k$ unknown disjoint axis-aligned rectangles. Both our algorithm and our lower bound make essential use of tools from Ramsey theory.