Abstract:This paper introduces MarketGAN, a factor-based generative framework for high-dimensional asset return generation under severe data scarcity. We embed an explicit asset-pricing factor structure as an economic inductive bias and generate returns as a single joint vector, thereby preserving cross-sectional dependence and tail co-movement alongside inter-temporal dynamics. MarketGAN employs generative adversarial learning with a temporal convolutional network (TCN) backbone, which models stochastic, time-varying factor loadings and volatilities and captures long-range temporal dependence. Using daily returns of large U.S. equities, we find that MarketGAN more closely matches empirical stylized facts of asset returns, including heavy-tailed marginal distributions, volatility clustering, leverage effects, and, most notably, high-dimensional cross-sectional correlation structures and tail co-movement across assets, than conventional factor-model-based bootstrap approaches. In portfolio applications, covariance estimates derived from MarketGAN-generated samples outperform those derived from other methods when factor information is at least weakly informative, demonstrating tangible economic value.
Abstract:Probabilistic forecasting is crucial in multivariate financial time-series for constructing efficient portfolios that account for complex cross-sectional dependencies. In this paper, we propose Diffolio, a diffusion model designed for multivariate financial time-series forecasting and portfolio construction. Diffolio employs a denoising network with a hierarchical attention architecture, comprising both asset-level and market-level layers. Furthermore, to better reflect cross-sectional correlations, we introduce a correlation-guided regularizer informed by a stable estimate of the target correlation matrix. This structure effectively extracts salient features not only from historical returns but also from asset-specific and systematic covariates, significantly enhancing the performance of forecasts and portfolios. Experimental results on the daily excess returns of 12 industry portfolios show that Diffolio outperforms various probabilistic forecasting baselines in multivariate forecasting accuracy and portfolio performance. Moreover, in portfolio experiments, portfolios constructed from Diffolio's forecasts show consistently robust performance, thereby outperforming those from benchmarks by achieving higher Sharpe ratios for the mean-variance tangency portfolio and higher certainty equivalents for the growth-optimal portfolio. These results demonstrate the superiority of our proposed Diffolio in terms of not only statistical accuracy but also economic significance.