Abstract:We present GLM-4.5, an open-source Mixture-of-Experts (MoE) large language model with 355B total parameters and 32B activated parameters, featuring a hybrid reasoning method that supports both thinking and direct response modes. Through multi-stage training on 23T tokens and comprehensive post-training with expert model iteration and reinforcement learning, GLM-4.5 achieves strong performance across agentic, reasoning, and coding (ARC) tasks, scoring 70.1% on TAU-Bench, 91.0% on AIME 24, and 64.2% on SWE-bench Verified. With much fewer parameters than several competitors, GLM-4.5 ranks 3rd overall among all evaluated models and 2nd on agentic benchmarks. We release both GLM-4.5 (355B parameters) and a compact version, GLM-4.5-Air (106B parameters), to advance research in reasoning and agentic AI systems. Code, models, and more information are available at https://github.com/zai-org/GLM-4.5.
Abstract:Face recognition (FR) has been applied to nearly every aspect of daily life, but it is always accompanied by the underlying risk of leaking private information. At present, almost all attack models against FR rely heavily on the presence of a classification layer. However, in practice, the FR model can obtain complex features of the input via the model backbone, and then compare it with the target for inference, which does not explicitly involve the outputs of the classification layer adopting logit or other losses. In this work, we advocate a novel inference attack composed of two stages for practical FR models without a classification layer. The first stage is the membership inference attack. Specifically, We analyze the distances between the intermediate features and batch normalization (BN) parameters. The results indicate that this distance is a critical metric for membership inference. We thus design a simple but effective attack model that can determine whether a face image is from the training dataset or not. The second stage is the model inversion attack, where sensitive private data is reconstructed using a pre-trained generative adversarial network (GAN) guided by the attack model in the first stage. To the best of our knowledge, the proposed attack model is the very first in the literature developed for FR models without a classification layer. We illustrate the application of the proposed attack model in the establishment of privacy-preserving FR techniques.