Abstract:Reliable long-term forecast of Earth system dynamics is heavily hampered by instabilities in current AI models during extended autoregressive simulations. These failures often originate from inherent spectral bias, leading to inadequate representation of critical high-frequency, small-scale processes and subsequent uncontrolled error amplification. We present Triton, an AI framework designed to address this fundamental challenge. Inspired by increasing grids to explicitly resolve small scales in numerical models, Triton employs a hierarchical architecture processing information across multiple resolutions to mitigate spectral bias and explicitly model cross-scale dynamics. We demonstrate Triton's superior performance on challenging forecast tasks, achieving stable year-long global temperature forecasts, skillful Kuroshio eddy predictions till 120 days, and high-fidelity turbulence simulations preserving fine-scale structures all without external forcing, with significantly surpassing baseline AI models in long-term stability and accuracy. By effectively suppressing high-frequency error accumulation, Triton offers a promising pathway towards trustworthy AI-driven simulation for climate and earth system science.
Abstract:Recent advancements in data-driven approaches, such as Neural Operator (NO), have demonstrated their effectiveness in reducing the solving time of Partial Differential Equations (PDEs). However, one major challenge faced by these approaches is the requirement for a large amount of high-precision training data, which needs significant computational costs during the generation process. To address this challenge, we propose a novel PDE dataset generation algorithm, namely Differential Operator Action in Solution space (DiffOAS), which speeds up the data generation process and enhances the precision of the generated data simultaneously. Specifically, DiffOAS obtains a few basic PDE solutions and then combines them to get solutions. It applies differential operators on these solutions, a process we call 'operator action', to efficiently generate precise PDE data points. Theoretical analysis shows that the time complexity of DiffOAS method is one order lower than the existing generation method. Experimental results show that DiffOAS accelerates the generation of large-scale datasets with 10,000 instances by 300 times. Even with just 5% of the generation time, NO trained on the data generated by DiffOAS exhibits comparable performance to that using the existing generation method, which highlights the efficiency of DiffOAS.