Abstract:Machine translation has long been a central task in natural language processing. With the rapid advancement of large language models (LLMs), there has been remarkable progress in translation quality. However, fully realizing the translation potential of LLMs remains an open challenge. Recent studies have explored multi-agent systems to decompose complex translation tasks into collaborative subtasks, showing initial promise in enhancing translation quality through agent cooperation and specialization. Nevertheless, existing multi-agent translation frameworks largely neglect foundational insights from cognitive translation studies. These insights emphasize how human translators employ different cognitive strategies, such as balancing literal and free translation, refining expressions based on context, and iteratively evaluating outputs. To address this limitation, we propose a cognitively informed multi-agent framework called TACTIC, which stands for T ranslation A gents with Cognitive- T heoretic Interactive Collaboration. The framework comprises six functionally distinct agents that mirror key cognitive processes observed in human translation behavior. These include agents for drafting, refinement, evaluation, scoring, context reasoning, and external knowledge gathering. By simulating an interactive and theory-grounded translation workflow, TACTIC effectively leverages the full capacity of LLMs for high-quality translation. Experimental results on diverse language pairs from the FLORES-200 and WMT24 benchmarks show that our method consistently achieves state-of-the-art performance. Using DeepSeek-V3 as the base model, TACTIC surpasses GPT-4.1 by an average of +0.6 XCOMET and +1.18 COMETKIWI-23. Compared to DeepSeek-R1, it further improves by +0.84 XCOMET and +2.99 COMETKIWI-23. Code is available at https://github.com/weiyali126/TACTIC.
Abstract:Graph-based fraud detection has widespread application in modern industry scenarios, such as spam review and malicious account detection. While considerable efforts have been devoted to designing adequate fraud detectors, the interpretability of their results has often been overlooked. Previous works have attempted to generate explanations for specific instances using post-hoc explaining methods such as a GNNExplainer. However, post-hoc explanations can not facilitate the model predictions and the computational cost of these methods cannot meet practical requirements, thus limiting their application in real-world scenarios. To address these issues, we propose SEFraud, a novel graph-based self-explainable fraud detection framework that simultaneously tackles fraud detection and result in interpretability. Concretely, SEFraud first leverages customized heterogeneous graph transformer networks with learnable feature masks and edge masks to learn expressive representations from the informative heterogeneously typed transactions. A new triplet loss is further designed to enhance the performance of mask learning. Empirical results on various datasets demonstrate the effectiveness of SEFraud as it shows considerable advantages in both the fraud detection performance and interpretability of prediction results. Moreover, SEFraud has been deployed and offers explainable fraud detection service for the largest bank in China, Industrial and Commercial Bank of China Limited (ICBC). Results collected from the production environment of ICBC show that SEFraud can provide accurate detection results and comprehensive explanations that align with the expert business understanding, confirming its efficiency and applicability in large-scale online services.