Abstract:We introduce MuirBench, a comprehensive benchmark that focuses on robust multi-image understanding capabilities of multimodal LLMs. MuirBench consists of 12 diverse multi-image tasks (e.g., scene understanding, ordering) that involve 10 categories of multi-image relations (e.g., multiview, temporal relations). Comprising 11,264 images and 2,600 multiple-choice questions, MuirBench is created in a pairwise manner, where each standard instance is paired with an unanswerable variant that has minimal semantic differences, in order for a reliable assessment. Evaluated upon 20 recent multi-modal LLMs, our results reveal that even the best-performing models like GPT-4o and Gemini Pro find it challenging to solve MuirBench, achieving 68.0% and 49.3% in accuracy. Open-source multimodal LLMs trained on single images can hardly generalize to multi-image questions, hovering below 33.3% in accuracy. These results highlight the importance of MuirBench in encouraging the community to develop multimodal LLMs that can look beyond a single image, suggesting potential pathways for future improvements.
Abstract:We introduce NoxTrader, which is designed for portfolio construction and trading execution, aims at generating profitable outcomes. The primary focus of NoxTrader is on stock market trading with an emphasis on cultivating moderate to long-term profits. The underlying learning process of NoxTrader hinges on the assimilation of insights gleaned from historical trading data, primarily hinging on time-series analysis due to the inherent nature of the employed dataset. We delineate the sequential progression encompassing data acquisition, feature engineering, predictive modeling, parameter configuration, establishment of a rigorous backtesting framework, and ultimately position NoxTrader as a testament to the prospective viability of algorithmic trading models within real-world trading scenarios.