Abstract:Large language models (LLMs) have introduced new paradigms for recommender systems by enabling richer semantic understanding and incorporating implicit world knowledge. In this study, we propose a systematic taxonomy that classifies existing approaches into two categories: (1) Pure LLM Recommenders, which rely solely on LLMs, and (2) Augmented LLM Recommenders, which integrate additional non-LLM techniques to enhance performance. This taxonomy provides a novel lens through which to examine the evolving landscape of LLM-based recommendation. To support fair comparison, we introduce a unified evaluation platform that benchmarks representative models under consistent experimental settings, highlighting key design choices that impact effectiveness. We conclude by discussing open challenges and outlining promising directions for future research. This work offers both a comprehensive overview and practical guidance for advancing next-generation LLM-powered recommender.
Abstract:We introduce NoxTrader, which is designed for portfolio construction and trading execution, aims at generating profitable outcomes. The primary focus of NoxTrader is on stock market trading with an emphasis on cultivating moderate to long-term profits. The underlying learning process of NoxTrader hinges on the assimilation of insights gleaned from historical trading data, primarily hinging on time-series analysis due to the inherent nature of the employed dataset. We delineate the sequential progression encompassing data acquisition, feature engineering, predictive modeling, parameter configuration, establishment of a rigorous backtesting framework, and ultimately position NoxTrader as a testament to the prospective viability of algorithmic trading models within real-world trading scenarios.