Abstract:To meet the requirements for managing unauthorized UAVs in the low-altitude economy, a multi-modal UAV trajectory prediction method based on the fusion of LiDAR and millimeter-wave radar information is proposed. A deep fusion network for multi-modal UAV trajectory prediction, termed the Multi-Modal Deep Fusion Framework, is designed. The overall architecture consists of two modality-specific feature extraction networks and a bidirectional cross-attention fusion module, aiming to fully exploit the complementary information of LiDAR and radar point clouds in spatial geometric structure and dynamic reflection characteristics. In the feature extraction stage, the model employs independent but structurally identical feature encoders for LiDAR and radar. After feature extraction, the model enters the Bidirectional Cross-Attention Mechanism stage to achieve information complementarity and semantic alignment between the two modalities. To verify the effectiveness of the proposed model, the MMAUD dataset used in the CVPR 2024 UG2+ UAV Tracking and Pose-Estimation Challenge is adopted as the training and testing dataset. Experimental results show that the proposed multi-modal fusion model significantly improves trajectory prediction accuracy, achieving a 40% improvement compared to the baseline model. In addition, ablation experiments are conducted to demonstrate the effectiveness of different loss functions and post-processing strategies in improving model performance. The proposed model can effectively utilize multi-modal data and provides an efficient solution for unauthorized UAV trajectory prediction in the low-altitude economy.
Abstract:With the development of the sixth-generation (6G) communication system, Channel State Information (CSI) plays a crucial role in improving network performance. Traditional Channel Charting (CC) methods map high-dimensional CSI data to low-dimensional spaces to help reveal the geometric structure of wireless channels. However, most existing CC methods focus on learning static geometric structures and ignore the dynamic nature of the channel over time, leading to instability and poor topological consistency of the channel charting in complex environments. To address this issue, this paper proposes a novel time-series channel charting approach based on the integration of Long Short-Term Memory (LSTM) networks and Auto encoders (AE) (LSTM-AE-CC). This method incorporates a temporal modeling mechanism into the traditional CC framework, capturing temporal dependencies in CSI using LSTM and learning continuous latent representations with AE. The proposed method ensures both geometric consistency of the channel and explicit modeling of the time-varying properties. Experimental results demonstrate that the proposed method outperforms traditional CC methods in various real-world communication scenarios, particularly in terms of channel charting stability, trajectory continuity, and long-term predictability.
Abstract:Stacked intelligent metasurface (SIM) extends the concept of single-layer reconfigurable holographic surfaces (RHS) by incorporating a multi-layered structure, thereby providing enhanced control over electromagnetic wave propagation and improved signal processing capabilities. This study investigates the potential of SIM in enhancing the rate fairness in multiuser downlink systems by addressing two key optimization problems: maximizing the minimum rate (MR) and maximizing the geometric mean of rates (GMR). {The former strives to enhance the minimum user rate, thereby ensuring fairness among users, while the latter relaxes fairness requirements to strike a better trade-off between user fairness and system sum-rate (SR).} For the MR maximization, we adopt a consensus alternating direction method of multipliers (ADMM)-based approach, which decomposes the approximated problem into sub-problems with closed-form solutions. {For GMR maximization, we develop an alternating optimization (AO)-based algorithm that also yields closed-form solutions and can be seamlessly adapted for SR maximization. Numerical results validate the effectiveness and convergence of the proposed algorithms.} Comparative evaluations show that MR maximization ensures near-perfect fairness, while GMR maximization balances fairness and system SR. Furthermore, the two proposed algorithms respectively outperform existing related works in terms of MR and SR performance. Lastly, SIM with lower power consumption achieves performance comparable to that of multi-antenna digital beamforming.