Abstract:Recent progress in image-to-3D has opened up immense possibilities for design, AR/VR, and robotics. However, to use AI-generated 3D assets in real applications, a critical requirement is the capability to edit them easily. We present a feedforward method, Steer3D, to add text steerability to image-to-3D models, which enables editing of generated 3D assets with language. Our approach is inspired by ControlNet, which we adapt to image-to-3D generation to enable text steering directly in a forward pass. We build a scalable data engine for automatic data generation, and develop a two-stage training recipe based on flow-matching training and Direct Preference Optimization (DPO). Compared to competing methods, Steer3D more faithfully follows the language instruction and maintains better consistency with the original 3D asset, while being 2.4x to 28.5x faster. Steer3D demonstrates that it is possible to add a new modality (text) to steer the generation of pretrained image-to-3D generative models with 100k data. Project website: https://glab-caltech.github.io/steer3d/
Abstract:Large language models (LLMs) have shown promising capabilities in using external tools to solve complex problems. However, existing approaches either involve fine-tuning on tool demonstrations, which do not generalize to new tools without additional training, or providing tool documentation in context, limiting the number of tools. Both approaches often generate syntactically invalid tool calls. In this paper, we propose ToolDec, a finite-state machine-guided decoding algorithm for tool-augmented LLMs. ToolDec eliminates tool-related errors for any tool-augmented LLMs by ensuring valid tool names and type-conforming arguments. Furthermore, ToolDec enables LLM to effectively select tools using only the information contained in their names, with no need for fine-tuning or in-context documentation. We evaluated multiple prior methods and their ToolDec-enhanced versions on a variety of tasks involving tools like math functions, knowledge graph relations, and complex real-world RESTful APIs. Our experiments show that ToolDec reduces syntactic errors to zero, consequently achieving significantly better performance and as much as a 2x speedup. We also show that ToolDec achieves superior generalization performance on unseen tools, performing up to 8x better than the baselines.