Abstract:Financial time series forecasting is both highly significant and challenging. Previous approaches typically standardized time series data before feeding it into forecasting models, but this encoding process inherently leads to a loss of important information. Moreover, past time series models generally require fixed numbers of variables or lookback window lengths, which further limits the scalability of time series forecasting. Besides, the interpretability and the uncertainty in forecasting remain areas requiring further research, as these factors directly impact the reliability and practical value of predictions. To address these issues, we first construct a diverse financial image-text dataset (FVLDB) and develop the Uncertainty-adjusted Group Relative Policy Optimization (UARPO) method to enable the model not only output predictions but also analyze the uncertainty of those predictions. We then proposed FinZero, a multimodal pre-trained model finetuned by UARPO to perform reasoning, prediction, and analytical understanding on the FVLDB financial time series. Extensive experiments validate that FinZero exhibits strong adaptability and scalability. After fine-tuning with UARPO, FinZero achieves an approximate 13.48\% improvement in prediction accuracy over GPT-4o in the high-confidence group, demonstrating the effectiveness of reinforcement learning fine-tuning in multimodal large model, including in financial time series forecasting tasks.
Abstract:Despite the growing attention to time series forecasting in recent years, many studies have proposed various solutions to address the challenges encountered in time series prediction, aiming to improve forecasting performance. However, effectively applying these time series forecasting models to the field of financial asset pricing remains a challenging issue. There is still a need for a bridge to connect cutting-edge time series forecasting models with financial asset pricing. To bridge this gap, we have undertaken the following efforts: 1) We constructed three datasets from the financial domain; 2) We selected over ten time series forecasting models from recent studies and validated their performance in financial time series; 3) We developed new metrics, msIC and msIR, in addition to MSE and MAE, to showcase the time series correlation captured by the models; 4) We designed financial-specific tasks for these three datasets and assessed the practical performance and application potential of these forecasting models in important financial problems. We hope the developed new evaluation suite, FinTSBridge, can provide valuable insights into the effectiveness and robustness of advanced forecasting models in finanical domains.