Abstract:As the demand for analyzing egocentric videos grows, egocentric visual attention prediction, anticipating where a camera wearer will attend, has garnered increasing attention. However, it remains challenging due to the inherent complexity and ambiguity of dynamic egocentric scenes. Motivated by evidence that scene contextual information plays a crucial role in modulating human attention, in this paper, we present a language-guided scene context-aware learning framework for robust egocentric visual attention prediction. We first design a context perceiver which is guided to summarize the egocentric video based on a language-based scene description, generating context-aware video representations. We then introduce two training objectives that: 1) encourage the framework to focus on the target point-of-interest regions and 2) suppress distractions from irrelevant regions which are less likely to attract first-person attention. Extensive experiments on Ego4D and Aria Everyday Activities (AEA) datasets demonstrate the effectiveness of our approach, achieving state-of-the-art performance and enhanced robustness across diverse, dynamic egocentric scenarios.




Abstract:As one of the successful Transformer-based models in computer vision tasks, SegFormer demonstrates superior performance in semantic segmentation. Nevertheless, the high computational cost greatly challenges the deployment of SegFormer on edge devices. In this paper, we seek to design a lightweight SegFormer for efficient semantic segmentation. Based on the observation that neurons in SegFormer layers exhibit large variances across different images, we propose a dynamic gated linear layer, which prunes the most uninformative set of neurons based on the input instance. To improve the dynamically pruned SegFormer, we also introduce two-stage knowledge distillation to transfer the knowledge within the original teacher to the pruned student network. Experimental results show that our method can significantly reduce the computation overhead of SegFormer without an apparent performance drop. For instance, we can achieve 36.9% mIoU with only 3.3G FLOPs on ADE20K, saving more than 60% computation with the drop of only 0.5% in mIoU



Abstract:By implicitly recognizing a user based on his/her speech input, speaker identification enables many downstream applications, such as personalized system behavior and expedited shopping checkouts. Based on whether the speech content is constrained or not, both text-dependent (TD) and text-independent (TI) speaker recognition models may be used. We wish to combine the advantages of both types of models through an ensemble system to make more reliable predictions. However, any such combined approach has to be robust to incomplete inputs, i.e., when either TD or TI input is missing. As a solution we propose a fusion of embeddings network foenet architecture, combining joint learning with neural attention. We compare foenet with four competitive baseline methods on a dataset of voice assistant inputs, and show that it achieves higher accuracy than the baseline and score fusion methods, especially in the presence of incomplete inputs.