Abstract:Models of neural machine translation are often from a discriminative family of encoderdecoders that learn a conditional distribution of a target sentence given a source sentence. In this paper, we propose a variational model to learn this conditional distribution for neural machine translation: a variational encoderdecoder model that can be trained end-to-end. Different from the vanilla encoder-decoder model that generates target translations from hidden representations of source sentences alone, the variational model introduces a continuous latent variable to explicitly model underlying semantics of source sentences and to guide the generation of target translations. In order to perform efficient posterior inference and large-scale training, we build a neural posterior approximator conditioned on both the source and the target sides, and equip it with a reparameterization technique to estimate the variational lower bound. Experiments on both Chinese-English and English- German translation tasks show that the proposed variational neural machine translation achieves significant improvements over the vanilla neural machine translation baselines.
Abstract:Implicit discourse relation recognition is a crucial component for automatic discourselevel analysis and nature language understanding. Previous studies exploit discriminative models that are built on either powerful manual features or deep discourse representations. In this paper, instead, we explore generative models and propose a variational neural discourse relation recognizer. We refer to this model as VarNDRR. VarNDRR establishes a directed probabilistic model with a latent continuous variable that generates both a discourse and the relation between the two arguments of the discourse. In order to perform efficient inference and learning, we introduce neural discourse relation models to approximate the prior and posterior distributions of the latent variable, and employ these approximated distributions to optimize a reparameterized variational lower bound. This allows VarNDRR to be trained with standard stochastic gradient methods. Experiments on the benchmark data set show that VarNDRR can achieve comparable results against stateof- the-art baselines without using any manual features.