Abstract:Decoding brain signals accurately and efficiently is crucial for intra-cortical brain-computer interfaces. Traditional decoding approaches based on neural activity vector features suffer from low accuracy, whereas deep learning based approaches have high computational cost. To improve both the decoding accuracy and efficiency, this paper proposes a spiking neural network (SNN) for effective and energy-efficient intra-cortical brain signal decoding. We also propose a feature fusion approach, which integrates the manually extracted neural activity vector features with those extracted by a deep neural network, to further improve the decoding accuracy. Experiments in decoding motor-related intra-cortical brain signals of two rhesus macaques demonstrated that our SNN model achieved higher accuracy than traditional artificial neural networks; more importantly, it was tens or hundreds of times more efficient. The SNN model is very suitable for high precision and low power applications like intra-cortical brain-computer interfaces.
Abstract:Spiking neural networks (SNNs) aim to simulate real neural networks in the human brain with biologically plausible neurons. The leaky integrate-and-fire (LIF) neuron is one of the most widely studied SNN architectures. However, it has the vanishing gradient problem when trained with backpropagation. Additionally, its neuronal parameters are often manually specified and fixed, in contrast to the heterogeneity of real neurons in the human brain. This paper proposes a gated parametric neuron (GPN) to process spatio-temporal information effectively with the gating mechanism. Compared with the LIF neuron, the GPN has two distinguishing advantages: 1) it copes well with the vanishing gradients by improving the flow of gradient propagation; and, 2) it learns spatio-temporal heterogeneous neuronal parameters automatically. Additionally, we use the same gate structure to eliminate initial neuronal parameter selection and design a hybrid recurrent neural network-SNN structure. Experiments on two spike-based audio datasets demonstrated that the GPN network outperformed several state-of-the-art SNNs, could mitigate vanishing gradients, and had spatio-temporal heterogeneous parameters. Our work shows the ability of SNNs to handle long-term dependencies and achieve high performance simultaneously.