Abstract:Existing approaches often enhance the performance of single-image super-resolution (SISR) methods by incorporating auxiliary structures, such as specialized loss functions, to indirectly boost the quality of low-resolution images. In this paper, we propose a plug-and-play module called Learnable Separable Kernels (LSKs), which are formally rank-one matrices designed to directly enhance image frequency components. We begin by explaining why LSKs are particularly suitable for SISR tasks from a frequency perspective. Baseline methods incorporating LSKs demonstrate a significant reduction of over 60\% in both the number of parameters and computational requirements. This reduction is achieved through the decomposition of LSKs into orthogonal and mergeable one-dimensional kernels. Additionally, we perform an interpretable analysis of the feature maps generated by LSKs. Visualization results reveal the capability of LSKs to enhance image frequency components effectively. Extensive experiments show that incorporating LSKs not only reduces the number of parameters and computational load but also improves overall model performance. Moreover, these experiments demonstrate that models utilizing LSKs exhibit superior performance, particularly as the upscaling factor increases.
Abstract:Equivariant models have recently been shown to improve the data efficiency of diffusion policy by a significant margin. However, prior work that explored this direction focused primarily on point cloud inputs generated by multiple cameras fixed in the workspace. This type of point cloud input is not compatible with the now-common setting where the primary input modality is an eye-in-hand RGB camera like a GoPro. This paper closes this gap by incorporating into the diffusion policy model a process that projects features from the 2D RGB camera image onto a sphere. This enables us to reason about symmetries in SO(3) without explicitly reconstructing a point cloud. We perform extensive experiments in both simulation and the real world that demonstrate that our method consistently outperforms strong baselines in terms of both performance and sample efficiency. Our work is the first SO(3)-equivariant policy learning framework for robotic manipulation that works using only monocular RGB inputs.