Constituency parsing plays a fundamental role in advancing natural language processing (NLP) tasks. However, training an automatic syntactic analysis system for ancient languages solely relying on annotated parse data is a formidable task due to the inherent challenges in building treebanks for such languages. It demands extensive linguistic expertise, leading to a scarcity of available resources. To overcome this hurdle, cross-lingual transfer techniques which require minimal or even no annotated data for low-resource target languages offer a promising solution. In this study, we focus on building a constituency parser for $\mathbf{M}$iddle $\mathbf{H}$igh $\mathbf{G}$erman ($\mathbf{MHG}$) under realistic conditions, where no annotated MHG treebank is available for training. In our approach, we leverage the linguistic continuity and structural similarity between MHG and $\mathbf{M}$odern $\mathbf{G}$erman ($\mathbf{MG}$), along with the abundance of MG treebank resources. Specifically, by employing the $\mathit{delexicalization}$ method, we train a constituency parser on MG parse datasets and perform cross-lingual transfer to MHG parsing. Our delexicalized constituency parser demonstrates remarkable performance on the MHG test set, achieving an F1-score of 67.3%. It outperforms the best zero-shot cross-lingual baseline by a margin of 28.6% points. These encouraging results underscore the practicality and potential for automatic syntactic analysis in other ancient languages that face similar challenges as MHG.
Multilingual pretrained language models (MPLMs) have demonstrated substantial performance improvements in zero-shot cross-lingual transfer across various natural language understanding tasks by finetuning MPLMs on task-specific labelled data of a source language (e.g. English) and evaluating on a wide range of target languages. Recent studies show that prompt-based finetuning surpasses regular finetuning in few-shot scenarios. However, the exploration of prompt-based learning in multilingual tasks remains limited. In this study, we propose the ProFiT pipeline to investigate the cross-lingual capabilities of Prompt-based Finetuning. We conduct comprehensive experiments on diverse cross-lingual language understanding tasks (sentiment classification, paraphrase identification, and natural language inference) and empirically analyze the variation trends of prompt-based finetuning performance in cross-lingual transfer across different few-shot and full-data settings. Our results reveal the effectiveness and versatility of prompt-based finetuning in cross-lingual language understanding. Our findings indicate that prompt-based finetuning outperforms vanilla finetuning in full-data scenarios and exhibits greater advantages in few-shot scenarios, with different performance patterns dependent on task types. Additionally, we analyze underlying factors such as language similarity and pretraining data size that impact the cross-lingual performance of prompt-based finetuning. Overall, our work provides valuable insights into the cross-lingual prowess of prompt-based finetuning.
The NLP community has mainly focused on scaling Large Language Models (LLMs) vertically, i.e., making them better for about 100 languages. We instead scale LLMs horizontally: we create, through continued pretraining, Glot500-m, an LLM that covers 511 predominantly low-resource languages. An important part of this effort is to collect and clean Glot500-c, a corpus that covers these 511 languages and allows us to train Glot500-m. We evaluate Glot500-m on five diverse tasks across these languages. We observe large improvements for both high-resource and low-resource languages compared to an XLM-R baseline. Our analysis shows that no single factor explains the quality of multilingual LLM representations. Rather, a combination of factors determines quality including corpus size, script, "help" from related languages and the total capacity of the model. Our work addresses an important goal of NLP research: we should not limit NLP to a small fraction of the world's languages and instead strive to support as many languages as possible to bring the benefits of NLP technology to all languages and cultures. Code, data and models are available at https://github.com/cisnlp/Glot500.
Multilingual Pretrained Language Models (MPLMs) have shown their strong multilinguality in recent empirical cross-lingual transfer studies. In this paper, we propose the Prompts Augmented by Retrieval Crosslingually (PARC) pipeline to improve the zero-shot performance on low-resource languages (LRLs) by augmenting the context with semantically similar sentences retrieved from a high-resource language (HRL) as prompts. PARC improves the zero-shot performance on three downstream tasks (binary sentiment classification, topic categorization and natural language inference) with multilingual parallel test sets across 10 LRLs covering 6 language families in both unlabeled settings (+5.1%) and labeled settings (+16.3%). PARC-labeled also outperforms the finetuning baseline by 3.7%. We find a significant positive correlation between cross-lingual transfer performance on one side, and the similarity between the high- and low-resource languages as well as the amount of low-resource pretraining data on the other side. A robustness analysis suggests that PARC has the potential to achieve even stronger performance with more powerful MPLMs.
We present a literature and empirical survey that critically assesses the state of the art in character-level modeling for machine translation (MT). Despite evidence in the literature that character-level systems are comparable with subword systems, they are virtually never used in competitive setups in WMT competitions. We empirically show that even with recent modeling innovations in character-level natural language processing, character-level MT systems still struggle to match their subword-based counterparts both in terms of translation quality and training and inference speed. Character-level MT systems show neither better domain robustness, nor better morphological generalization, despite being often so motivated. On the other hand, they tend to be more robust towards source side noise and the translation quality does not degrade with increasing beam size at decoding time.
A recent approach for few-shot text classification is to convert textual inputs to cloze questions that contain some form of task description, process them with a pretrained language model and map the predicted words to labels. Manually defining this mapping between words and labels requires both domain expertise and an understanding of the language model's abilities. To mitigate this issue, we devise an approach that automatically finds such a mapping given small amounts of training data. For a number of tasks, the mapping found by our approach performs almost as well as hand-crafted label-to-word mappings.
Text corpora which are tagged with part-of-speech information are useful in many areas of linguistic research. In this paper, a new part-of-speech tagging method based on neural networks (Net- Tagger) is presented and its performance is compared to that of a HMM-tagger and a trigram-based tagger. It is shown that the Net- Tagger performs as well as the trigram-based tagger and better than the HMM-tagger.