Abstract:The shape of a cell contains essential information about its function within the biological system. Segmenting these structures from large-scale 3D microscopy images is challenging, limiting clinical insights especially for microglia, immune-associated cells involved in neurodegenerative diseases. Existing segmentation methods mainly focus on cell bodies, struggle with overlapping structures, perform poorly on noisy images, require hyperparameter tuning for each new dataset, or rely on tedious semi-automated approaches. We introduce trAIce3D, a deep-learning architecture designed for precise microglia segmentation, capturing both somas and branches. It employs a two-stage approach: first, a 3D U-Net with vision transformers in the encoder detects somas using a sliding-window technique to cover the entire image. Then, the same architecture, enhanced with cross-attention blocks in skip connections, refines each soma and its branches by using soma coordinates as a prompt and a 3D window around the target cell as input. Training occurs in two phases: self-supervised Soma Segmentation, followed by prompt-based Branch Segmentation, leveraging pre-trained weights from the first phase. Trained and evaluated on a dataset of 41,230 microglial cells, trAIce3D significantly improves segmentation accuracy and generalization, enabling scalable analysis of complex cellular morphologies. While optimized for microglia, its architecture can extend to other intricate cell types, such as neurons and astrocytes, broadening its impact on neurobiological research.
Abstract:We introduce XCOMPS in this work, a multilingual conceptual minimal pair dataset covering 17 languages. Using this dataset, we evaluate LLMs' multilingual conceptual understanding through metalinguistic prompting, direct probability measurement, and neurolinguistic probing. By comparing base, instruction-tuned, and knowledge-distilled models, we find that: 1) LLMs exhibit weaker conceptual understanding for low-resource languages, and accuracy varies across languages despite being tested on the same concept sets. 2) LLMs excel at distinguishing concept-property pairs that are visibly different but exhibit a marked performance drop when negative pairs share subtle semantic similarities. 3) Instruction tuning improves performance in concept understanding but does not enhance internal competence; knowledge distillation can enhance internal competence in conceptual understanding for low-resource languages with limited gains in explicit task performance. 4) More morphologically complex languages yield lower concept understanding scores and require deeper layers for conceptual reasoning.