Abstract:The rapid evolution of large language models (LLMs) is transforming artificial intelligence into autonomous research partners, yet a critical gap persists in complex scientific domains such as combustion modeling. Here, practical AI assistance requires the seamless integration of domain literature knowledge with robust execution capabilities for expertise-intensive tools such as computational fluid dynamics (CFD) codes. To bridge this gap, we introduce FlamePilot, an LLM agent designed to empower combustion modeling research through automated and self-corrective CFD workflows. FlamePilot differentiates itself through an architecture that leverages atomic tools to ensure the robust setup and execution of complex simulations in both OpenFOAM and extended frameworks such as DeepFlame. The system is also capable of learning from scientific articles, extracting key information to guide the simulation from initial setup to optimized results. Validation on a public benchmark shows FlamePilot achieved a perfect 1.0 executability score and a 0.438 success rate, surpassing the prior best reported agent scores of 0.625 and 0.250, respectively. Furthermore, a detailed case study on Moderate or Intense Low-oxygen Dilution (MILD) combustion simulation demonstrates its efficacy as a collaborative research copilot, where FlamePilot autonomously translated a research paper into a configured simulation, conducted the simulation, post-processed the results, proposed evidence-based refinements, and managed a multi-step parameter study to convergence under minimal human intervention. By adopting a transparent and interpretable paradigm, FlamePilot establishes a foundational framework for AI-empowered combustion modeling, fostering a collaborative partnership where the agent manages workflow orchestration, freeing the researcher for high-level analysis.
Abstract:Predicting multiphysics dynamics is computationally expensive and challenging due to the severe coupling of multi-scale, heterogeneous physical processes. While neural surrogates promise a paradigm shift, the field currently suffers from an "illusion of mastery", as repeatedly emphasized in top-tier commentaries: existing evaluations overly rely on simplified, low-dimensional proxies, which fail to expose the models' inherent fragility in realistic regimes. To bridge this critical gap, we present REALM (REalistic AI Learning for Multiphysics), a rigorous benchmarking framework designed to test neural surrogates on challenging, application-driven reactive flows. REALM features 11 high-fidelity datasets spanning from canonical multiphysics problems to complex propulsion and fire safety scenarios, alongside a standardized end-to-end training and evaluation protocol that incorporates multiphysics-aware preprocessing and a robust rollout strategy. Using this framework, we systematically benchmark over a dozen representative surrogate model families, including spectral operators, convolutional models, Transformers, pointwise operators, and graph/mesh networks, and identify three robust trends: (i) a scaling barrier governed jointly by dimensionality, stiffness, and mesh irregularity, leading to rapidly growing rollout errors; (ii) performance primarily controlled by architectural inductive biases rather than parameter count; and (iii) a persistent gap between nominal accuracy metrics and physically trustworthy behavior, where models with high correlations still miss key transient structures and integral quantities. Taken together, REALM exposes the limits of current neural surrogates on realistic multiphysics flows and offers a rigorous testbed to drive the development of next-generation physics-aware architectures.