Abstract:Compound Al Systems (CAIS) is an emerging paradigm that integrates large language models (LLMs) with external components, such as retrievers, agents, tools, and orchestrators, to overcome the limitations of standalone models in tasks requiring memory, reasoning, real-time grounding, and multimodal understanding. These systems enable more capable and context-aware behaviors by composing multiple specialized modules into cohesive workflows. Despite growing adoption in both academia and industry, the CAIS landscape remains fragmented, lacking a unified framework for analysis, taxonomy, and evaluation. In this survey, we define the concept of CAIS, propose a multi-dimensional taxonomy based on component roles and orchestration strategies, and analyze four foundational paradigms: Retrieval-Augmented Generation (RAG), LLM Agents, Multimodal LLMs (MLLMs), and orchestration-centric architectures. We review representative systems, compare design trade-offs, and summarize evaluation methodologies across these paradigms. Finally, we identify key challenges-including scalability, interoperability, benchmarking, and coordination-and outline promising directions for future research. This survey aims to provide researchers and practitioners with a comprehensive foundation for understanding, developing, and advancing the next generation of system-level artificial intelligence.
Abstract:Extreme events, such as market crashes, natural disasters, and pandemics, are rare but catastrophic, often triggering cascading failures across interconnected systems. Accurate prediction and early warning can help minimize losses and improve preparedness. While data-driven methods offer powerful capabilities for extreme event modeling, they require abundant training data, yet extreme event data is inherently scarce, creating a fundamental challenge. Synthetic data generation has emerged as a powerful solution. However, existing surveys focus on general data with privacy preservation emphasis, rather than extreme events' unique performance requirements. This survey provides the first overview of synthetic data generation for extreme events. We systematically review generative modeling techniques and large language models, particularly those enhanced by statistical theory as well as specialized training and sampling mechanisms to capture heavy-tailed distributions. We summarize benchmark datasets and introduce a tailored evaluation framework covering statistical, dependence, visual, and task-oriented metrics. A central contribution is our in-depth analysis of each metric's applicability in extremeness and domain-specific adaptations, providing actionable guidance for model evaluation in extreme settings. We categorize key application domains and identify underexplored areas like behavioral finance, wildfires, earthquakes, windstorms, and infectious outbreaks. Finally, we outline open challenges, providing a structured foundation for advancing synthetic rare-event research.
Abstract:Virtual Reality (VR) headsets, while integral to the evolving digital ecosystem, present a critical challenge: the occlusion of users' eyes and portions of their faces, which hinders visual communication and may contribute to social isolation. To address this, we introduce RevAvatar, an innovative framework that leverages AI methodologies to enable reverse pass-through technology, fundamentally transforming VR headset design and interaction paradigms. RevAvatar integrates state-of-the-art generative models and multimodal AI techniques to reconstruct high-fidelity 2D facial images and generate accurate 3D head avatars from partially observed eye and lower-face regions. This framework represents a significant advancement in AI4Tech by enabling seamless interaction between virtual and physical environments, fostering immersive experiences such as VR meetings and social engagements. Additionally, we present VR-Face, a novel dataset comprising 200,000 samples designed to emulate diverse VR-specific conditions, including occlusions, lighting variations, and distortions. By addressing fundamental limitations in current VR systems, RevAvatar exemplifies the transformative synergy between AI and next-generation technologies, offering a robust platform for enhancing human connection and interaction in virtual environments.
Abstract:Unauthorized screen capturing and dissemination pose severe security threats such as data leakage and information theft. Several studies propose robust watermarking methods to track the copyright of Screen-Camera (SC) images, facilitating post-hoc certification against infringement. These techniques typically employ heuristic mathematical modeling or supervised neural network fitting as the noise layer, to enhance watermarking robustness against SC. However, both strategies cannot fundamentally achieve an effective approximation of SC noise. Mathematical simulation suffers from biased approximations due to the incomplete decomposition of the noise and the absence of interdependence among the noise components. Supervised networks require paired data to train the noise-fitting model, and it is difficult for the model to learn all the features of the noise. To address the above issues, we propose Simulation-to-Real (S2R). Specifically, an unsupervised noise layer employs unpaired data to learn the discrepancy between the modeling simulated noise distribution and the real-world SC noise distribution, rather than directly learning the mapping from sharp images to real-world images. Learning this transformation from simulation to reality is inherently simpler, as it primarily involves bridging the gap in noise distributions, instead of the complex task of reconstructing fine-grained image details. Extensive experimental results validate the efficacy of the proposed method, demonstrating superior watermark robustness and generalization compared to those of state-of-the-art methods.
Abstract:Flowcharts are typically presented as images, driving the trend of using vision-language models (VLMs) for end-to-end flowchart understanding. However, two key challenges arise: (i) Limited controllability--users have minimal influence over the downstream task, as they can only modify input images, while the training of VLMs is often out of reach for most researchers. (ii) Lack of explainability--it is difficult to trace VLM errors to specific causes, such as failures in visual encoding or reasoning. We propose TextFlow, addressing aforementioned issues with two stages: (i) Vision Textualizer--which generates textual representations from flowchart images; and (ii) Textual Reasoner--which performs question-answering based on the text representations. TextFlow offers three key advantages: (i) users can select the type of text representations (e.g., Graphviz, Mermaid, PlantUML), or further convert them into executable graph object to call tools, enhancing performance and controllability; (ii) it improves explainability by helping to attribute errors more clearly to visual or textual processing components; and (iii) it promotes the modularization of the solution, such as allowing advanced LLMs to be used in the Reasoner stage when VLMs underperform in end-to-end fashion. Experiments on the FlowVQA and FlowLearn benchmarks demonstrate TextFlow's state-of-the-art performance as well as its robustness. All code is publicly available.
Abstract:The mathematical capabilities of AI systems are complex and multifaceted. Most existing research has predominantly focused on the correctness of AI-generated solutions to mathematical problems. In this work, we argue that beyond producing correct answers, AI systems should also be capable of, or assist humans in, developing novel solutions to mathematical challenges. This study explores the creative potential of Large Language Models (LLMs) in mathematical reasoning, an aspect that has received limited attention in prior research. We introduce a novel framework and benchmark, CreativeMath, which encompasses problems ranging from middle school curricula to Olympic-level competitions, designed to assess LLMs' ability to propose innovative solutions after some known solutions have been provided. Our experiments demonstrate that, while LLMs perform well on standard mathematical tasks, their capacity for creative problem-solving varies considerably. Notably, the Gemini-1.5-Pro model outperformed other LLMs in generating novel solutions. This research opens a new frontier in evaluating AI creativity, shedding light on both the strengths and limitations of LLMs in fostering mathematical innovation, and setting the stage for future developments in AI-assisted mathematical discovery.
Abstract:Consider the math problem: "Lily received 3 cookies from her best friend yesterday and ate 5 for breakfast. Today, her friend gave her 3 more cookies. How many cookies does Lily have now?" Many large language models (LLMs) in previous research approach this problem by calculating the answer "1" using the equation "3 - 5 + 3." However, from a human perspective, we recognize the inherent flaw in this problem: Lily cannot eat 5 cookies if she initially only had 3. This discrepancy prompts a key question: Are current LLMs merely Blind Solver that apply mathematical operations without deeper reasoning, or can they function as Logical Thinker capable of identifying logical inconsistencies? To explore this question, we propose a benchmark dataset, FaultyMath, which includes faulty math problems of rich diversity: i) multiple mathematical categories, e.g., algebra, geometry, number theory, etc., ii) varying levels of difficulty, and iii) different origins of faultiness -- ranging from violations of common sense and ambiguous statements to mathematical contradictions and more. We evaluate a broad spectrum of LLMs, including open-source, closed-source, and math-specialized models, using FaultyMath across three dimensions: (i) How accurately can the models detect faulty math problems without being explicitly prompted to do so? (ii) When provided with hints -- either correct or misleading -- about the validity of the problems, to what extent do LLMs adapt to become reliable Logical Thinker? (iii) How trustworthy are the explanations generated by LLMs when they recognize a math problem as flawed? Through extensive experimentation and detailed analysis, our results demonstrate that existing LLMs largely function as Blind Solver and fall short of the reasoning capabilities required to perform as Logical Thinker.
Abstract:Machine learning techniques have shown remarkable accuracy in localization tasks, but their dependency on vast amounts of labeled data, particularly Channel State Information (CSI) and corresponding coordinates, remains a bottleneck. Self-supervised learning techniques alleviate the need for labeled data, a potential that remains largely untapped and underexplored in existing research. Addressing this gap, we propose a pioneering approach that leverages self-supervised pretraining on unlabeled data to boost the performance of supervised learning for user localization based on CSI. We introduce two pretraining Auto Encoder (AE) models employing Multi Layer Perceptrons (MLPs) and Convolutional Neural Networks (CNNs) to glean representations from unlabeled data via self-supervised learning. Following this, we utilize the encoder portion of the AE models to extract relevant features from labeled data, and finetune an MLP-based Position Estimation Model to accurately deduce user locations. Our experimentation on the CTW-2020 dataset, which features a substantial volume of unlabeled data but limited labeled samples, demonstrates the viability of our approach. Notably, the dataset covers a vast area spanning over 646x943x41 meters, and our approach demonstrates promising results even for such expansive localization tasks.
Abstract:Edge intelligence enables resource-demanding Deep Neural Network (DNN) inference without transferring original data, addressing concerns about data privacy in consumer Internet of Things (IoT) devices. For privacy-sensitive applications, deploying models in hardware-isolated trusted execution environments (TEEs) becomes essential. However, the limited secure memory in TEEs poses challenges for deploying DNN inference, and alternative techniques like model partitioning and offloading introduce performance degradation and security issues. In this paper, we present a novel approach for advanced model deployment in TrustZone that ensures comprehensive privacy preservation during model inference. We design a memory-efficient management method to support memory-demanding inference in TEEs. By adjusting the memory priority, we effectively mitigate memory leakage risks and memory overlap conflicts, resulting in 32 lines of code alterations in the trusted operating system. Additionally, we leverage two tiny libraries: S-Tinylib (2,538 LoCs), a tiny deep learning library, and Tinylibm (827 LoCs), a tiny math library, to support efficient inference in TEEs. We implemented a prototype on Raspberry Pi 3B+ and evaluated it using three well-known lightweight DNN models. The experimental results demonstrate that our design significantly improves inference speed by 3.13 times and reduces power consumption by over 66.5% compared to non-memory optimization method in TEEs.
Abstract:Efforts to predict stock market outcomes have yielded limited success due to the inherently stochastic nature of the market, influenced by numerous unpredictable factors. Many existing prediction approaches focus on single-point predictions, lacking the depth needed for effective decision-making and often overlooking market risk. To bridge this gap, we propose a novel model, RAGIC, which introduces sequence generation for stock interval prediction to quantify uncertainty more effectively. Our approach leverages a Generative Adversarial Network (GAN) to produce future price sequences infused with randomness inherent in financial markets. RAGIC's generator includes a risk module, capturing the risk perception of informed investors, and a temporal module, accounting for historical price trends and seasonality. This multi-faceted generator informs the creation of risk-sensitive intervals through statistical inference, incorporating horizon-wise insights. The interval's width is carefully adjusted to reflect market volatility. Importantly, our approach relies solely on publicly available data and incurs only low computational overhead. RAGIC's evaluation across globally recognized broad-based indices demonstrates its balanced performance, offering both accuracy and informativeness. Achieving a consistent 95% coverage, RAGIC maintains a narrow interval width. This promising outcome suggests that our approach effectively addresses the challenges of stock market prediction while incorporating vital risk considerations.