Abstract:The Terahertz (0.1-10 THz) band holds enormous potential for supporting unprecedented data rates and millimeter-level accurate sensing thanks to its ultra-broad bandwidth. Terahertz integrated sensing and communication (ISAC) is viewed as a game-changing technology to realize connected intelligence in 6G and beyond systems. In this article, challenges from THz channel and transceiver perspectives, as well as difficulties of ISAC are elaborated. Motivated by these challenges, THz ISAC channels are studied in terms of channel types, measurement and models. Moreover, four key signal processing techniques to unleash the full potential of THz ISAC are investigated, namely, waveform design, receiver processing, narrowbeam management, and localization. Quantitative studies demonstrate the benefits and performance of the state-of-the-art signal processing methods. Finally, open problems and potential solutions are discussed.
Abstract:As multipath components (MPCs) are experimentally observed to appear in clusters, cluster-based channel models have been focused in the wireless channel study. However, most of the MPC clustering algorithms for MIMO channels with delay and angle information of MPCs are based on the distance metric that quantifies the similarity of two MPCs and determines the preferred cluster shape, greatly impacting MPC clustering quality. In this paper, a general framework of Mahalanobis-distance metric is proposed for MPC clustering in MIMO channel analysis, without user-specified parameters. Remarkably, the popular multipath component distance (MCD) is proved to be a special case of the proposed distance metric framework. Furthermore, two machine learning algorithms, namely, weak-supervised Mahalanobis metric for clustering and supervised large margin nearest neighbor, are introduced to learn the distance metric. To evaluate the effectiveness, a modified channel model is proposed based on the 3GPP spatial channel model to generate clustered MPCs with delay and angular information, since the original 3GPP spatial channel model (SCM) is incapable to evaluate clustering quality. Experiment results show that the proposed distance metric can significantly improve the clustering quality of existing clustering algorithms, while the learning phase requires considerably limited efforts of labeling MPCs.
Abstract:For E-band wireless communications, a high gain steerable antenna with sub-arrays is desired to reduce the implementation complexity. This paper presents an E-band communication link with 256-elements antennas based on 8-elements sub-arrays and four beam-forming chips in silicon germanium (SiGe) bipolar complementary metal-oxide-semiconductor (BiCMOS), which is packaged on a 19-layer low temperature co-fired ceramic (LTCC) substrate. After the design and manufacture of the 256-elements antenna, a fast near-field calibration method is proposed for calibration, where a single near-field measurement is required. Then near-field to far-field (NFFF) transform and far-field to near-field (FFNF) transform are used for the bore-sight calibration. The comparison with high frequency structure simulator (HFSS) is utilized for the non-bore-sight calibration. Verified on the 256-elements antenna, the beam-forming performance measured in the chamber is in good agreement with the simulations. The communication in the office environment is also realized using a fifth generation (5G) new radio (NR) system, whose bandwidth is 400 megahertz (MHz) and waveform format is orthogonal frequency division multiplexing (OFDM) with 120 kilohertz (kHz) sub-carrier spacing.