Abstract:Recently, deep learning-enabled joint-source channel coding (JSCC) has received increasing attention due to its great success in image transmission. However, most existing JSCC studies only focus on single-input single-output (SISO) channels. In this paper, we first propose a JSCC system for wireless image transmission over multiple-input multiple-output (MIMO) channels. As the complexity of an image determines its reconstruction difficulty, the JSCC achieves quite different reconstruction performances on different images. Moreover, we observe that the images with higher reconstruction qualities are generally more robust to the noise, and can be allocated with less communication resources than the images with lower reconstruction qualities. Based on this observation, we propose an adaptive channel state information (CSI) feedback scheme for precoding, which improves the effectiveness by adjusting the feedback overhead. In particular, we develop a performance evaluator to predict the reconstruction quality of each image, so that the proposed scheme can adaptively decrease the CSI feedback overhead for the transmitted images with high predicted reconstruction qualities in the JSCC system. We perform experiments to demonstrate that the proposed scheme can significantly improve the image transmission performance with much-reduced feedback overhead.
Abstract:Integrated sensing and communication (ISAC) has recently been considered as a promising approach to save spectrum resources and reduce hardware cost. Meanwhile, as information security becomes increasingly more critical issue, government agencies urgently need to legitimately monitor suspicious communications via proactive eavesdropping. Thus, in this paper, we investigate a wireless legitimate surveillance system with radar function. We seek to jointly optimize the receive and transmit beamforming vectors to maximize the eavesdropping success probability which is transformed into the difference of signal-to-interference-plus-noise ratios (SINRs) subject to the performance requirements of radar and surveillance. The formulated problem is challenging to solve. By employing the Rayleigh quotient and fully exploiting the structure of the problem, we apply the divide-and-conquer principle to divide the formulated problem into two subproblems for two different cases. For the first case, we aim at minimizing the total transmit power, and for the second case we focus on maximizing the jamming power. For both subproblems, with the aid of orthogonal decomposition, we obtain the optimal solution of the receive and transmit beamforming vectors in closed-form. Performance analysis and discussion of some insightful results are also carried out. Finally, extensive simulation results demonstrate the effectiveness of our proposed algorithm in terms of eavesdropping success probability.
Abstract:As an efficient graph analytical tool, graph neural networks (GNNs) have special properties that are particularly fit for the characteristics and requirements of wireless communications, exhibiting good potential for the advancement of next-generation wireless communications. This article aims to provide a comprehensive overview of the interplay between GNNs and wireless communications, including GNNs for wireless communications (GNN4Com) and wireless communications for GNNs (Com4GNN). In particular, we discuss GNN4Com based on how graphical models are constructed and introduce Com4GNN with corresponding incentives. We also highlight potential research directions to promote future research endeavors for GNNs in wireless communications.
Abstract:Task-oriented semantic communication has achieved significant performance gains. However, the model has to be updated once the task is changed or multiple models need to be stored for serving different tasks. To address this issue, we develop a unified deep learning enabled semantic communication system (U-DeepSC), where a unified end-to-end framework can serve many different tasks with multiple modalities. As the difficulty varies from different tasks, different numbers of neural network layers are required for various tasks. We develop a multi-exit architecture in U-DeepSC to provide early-exit results for relatively simple tasks. To reduce the transmission overhead, we design a unified codebook for feature representation for serving multiple tasks, in which only the indices of these task-specific features in the codebook are transmitted. Moreover, we propose a dimension-wise dynamic scheme that can adjust the number of transmitted indices for different tasks as the number of required features varies from task to task. Furthermore, our dynamic scheme can adaptively adjust the numbers of transmitted features under different channel conditions to optimize the transmission efficiency. According to simulation results, the proposed U-DeepSC achieves comparable performance to the task-oriented semantic communication system designed for a specific task but with significant reduction in both transmission overhead and model size.
Abstract:As an efficient neural network model for graph data, graph neural networks (GNNs) recently find successful applications for various wireless optimization problems. Given that the inference stage of GNNs can be naturally implemented in a decentralized manner, GNN is a potential enabler for decentralized control/management in the next-generation wireless communications. Privacy leakage, however, may occur due to the information exchanges among neighbors during decentralized inference with GNNs. To deal with this issue, in this paper, we analyze and enhance the privacy of decentralized inference with GNNs in wireless networks. Specifically, we adopt local differential privacy as the metric, and design novel privacy-preserving signals as well as privacy-guaranteed training algorithms to achieve privacy-preserving inference. We also define the SNR-privacy trade-off function to analyze the performance upper bound of decentralized inference with GNNs in wireless networks. To further enhance the communication and computation efficiency, we adopt the over-the-air computation technique and theoretically demonstrate its advantage in privacy preservation. Through extensive simulations on the synthetic graph data, we validate our theoretical analysis, verify the effectiveness of proposed privacy-preserving wireless signaling and privacy-guaranteed training algorithm, and offer some guidance on practical implementation.
Abstract:Although semantic communications have exhibited satisfactory performance for a large number of tasks, the impact of semantic noise and the robustness of the systems have not been well investigated. Semantic noise refers to the misleading between the intended semantic symbols and received ones, thus cause the failure of tasks. In this paper, we first propose a framework for the robust end-to-end semantic communication systems to combat the semantic noise. In particular, we analyze sample-dependent and sample-independent semantic noise. To combat the semantic noise, the adversarial training with weight perturbation is developed to incorporate the samples with semantic noise in the training dataset. Then, we propose to mask a portion of the input, where the semantic noise appears frequently, and design the masked vector quantized-variational autoencoder (VQ-VAE) with the noise-related masking strategy. We use a discrete codebook shared by the transmitter and the receiver for encoded feature representation. To further improve the system robustness, we develop a feature importance module (FIM) to suppress the noise-related and task-unrelated features. Thus, the transmitter simply needs to transmit the indices of these important task-related features in the codebook. Simulation results show that the proposed method can be applied in many downstream tasks and significantly improve the robustness against semantic noise with remarkable reduction on the transmission overhead.
Abstract:In massive multiple-input multiple-output (MIMO) systems, hybrid analog-digital beamforming is an essential technique for exploiting the potential array gain without using a dedicated radio frequency chain for each antenna. However, due to the large number of antennas, the conventional channel estimation and hybrid beamforming algorithms generally require high computational complexity and signaling overhead. In this work, we propose an end-to-end deep-unfolding neural network (NN) joint channel estimation and hybrid beamforming (JCEHB) algorithm to maximize the system sum rate in time-division duplex (TDD) massive MIMO. Specifically, the recursive least-squares (RLS) algorithm and stochastic successive convex approximation (SSCA) algorithm are unfolded for channel estimation and hybrid beamforming, respectively. In order to reduce the signaling overhead, we consider a mixed-timescale hybrid beamforming scheme, where the analog beamforming matrices are optimized based on the channel state information (CSI) statistics offline, while the digital beamforming matrices are designed at each time slot based on the estimated low-dimensional equivalent CSI matrices. We jointly train the analog beamformers together with the trainable parameters of the RLS and SSCA induced deep-unfolding NNs based on the CSI statistics offline. During data transmission, we estimate the low-dimensional equivalent CSI by the RLS induced deep-unfolding NN and update the digital beamformers. In addition, we propose a mixed-timescale deep-unfolding NN where the analog beamformers are optimized online, and extend the framework to frequency-division duplex (FDD) systems where channel feedback is considered. Simulation results show that the proposed algorithm can significantly outperform conventional algorithms with reduced computational complexity and signaling overhead.
Abstract:The task-oriented semantic communication systems have achieved significant performance gain, however, the paradigm that employs a model for a specific task might be limited, since the system has to be updated once the task is changed or multiple models are stored for serving various tasks. To address this issue, we firstly propose a unified deep learning enabled semantic communication system (U-DeepSC), where a unified model is developed to serve various transmission tasks. To jointly serve these tasks in one model with fixed parameters, we employ domain adaptation in the training procedure to specify the task-specific features for each task. Thus, the system only needs to transmit the task-specific features, rather than all the features, to reduce the transmission overhead. Moreover, since each task is of different difficulty and requires different number of layers to achieve satisfactory performance, we develop the multi-exit architecture to provide early-exit results for relatively simple tasks. In the experiments, we employ a proposed U-DeepSC to serve five tasks with multi-modalities. Simulation results demonstrate that our proposed U-DeepSC achieves comparable performance to the task-oriented semantic communication system designed for a specific task with significant transmission overhead reduction and much less number of model parameters.
Abstract:Although the semantic communications have exhibited satisfactory performance in a large number of tasks, the impact of semantic noise and the robustness of the systems have not been well investigated. Semantic noise is a particular kind of noise in semantic communication systems, which refers to the misleading between the intended semantic symbols and received ones. In this paper, we first propose a framework for the robust end-to-end semantic communication systems to combat the semantic noise. Particularly, we analyze the causes of semantic noise and propose a practical method to generate it. To remove the effect of semantic noise, adversarial training is proposed to incorporate the samples with semantic noise in the training dataset. Then, the masked autoencoder is designed as the architecture of a robust semantic communication system, where a portion of the input is masked. To further improve the robustness of semantic communication systems, we design a discrete codebook shared by the transmitter and the receiver for encoded feature representation. Thus, the transmitter simply needs to transmit the indices of these features in the codebook. Simulation results show that our proposed method significantly improves the robustness of semantic communication systems against semantic noise with significant reduction on the transmission overhead.
Abstract:Deep-unfolding neural networks (NNs) have received great attention since they achieve satisfactory performance with relatively low complexity. Typically, these deep-unfolding NNs are restricted to a fixed-depth for all inputs. However, the optimal number of layers required for convergence changes with different inputs. In this paper, we first develop a framework of deep deterministic policy gradient (DDPG)-driven deep-unfolding with adaptive depth for different inputs, where the trainable parameters of deep-unfolding NN are learned by DDPG, rather than updated by the stochastic gradient descent algorithm directly. Specifically, the optimization variables, trainable parameters, and architecture of deep-unfolding NN are designed as the state, action, and state transition of DDPG, respectively. Then, this framework is employed to deal with the channel estimation problem in massive multiple-input multiple-output systems. Specifically, first of all we formulate the channel estimation problem with an off-grid basis and develop a sparse Bayesian learning (SBL)-based algorithm to solve it. Secondly, the SBL-based algorithm is unfolded into a layer-wise structure with a set of introduced trainable parameters. Thirdly, the proposed DDPG-driven deep-unfolding framework is employed to solve this channel estimation problem based on the unfolded structure of the SBL-based algorithm. To realize adaptive depth, we design the halting score to indicate when to stop, which is a function of the channel reconstruction error. Furthermore, the proposed framework is extended to realize the adaptive depth of the general deep neural networks (DNNs). Simulation results show that the proposed algorithm outperforms the conventional optimization algorithms and DNNs with fixed depth with much reduced number of layers.