Abstract:We study the Out-of-Distribution (OOD) generalization in machine learning and propose a general framework that provides information-theoretic generalization bounds. Our framework interpolates freely between Integral Probability Metric (IPM) and $f$-divergence, which naturally recovers some known results (including Wasserstein- and KL-bounds), as well as yields new generalization bounds. Moreover, we show that our framework admits an optimal transport interpretation. When evaluated in two concrete examples, the proposed bounds either strictly improve upon existing bounds in some cases or recover the best among existing OOD generalization bounds.
Abstract:In this paper, we take an information-theoretic approach to understand the robustness in wireless distributed learning. Upon measuring the difference in loss functions, we provide an upper bound of the performance deterioration due to imperfect wireless channels. Moreover, we characterize the transmission rate under task performance guarantees and propose the channel capacity gain resulting from the inherent robustness in wireless distributed learning. An efficient algorithm for approximating the derived upper bound is established for practical use. The effectiveness of our results is illustrated by the numerical simulations.
Abstract:In the realm of semantic communication, the significance of encoded features can vary, while wireless channels are known to exhibit fluctuations across multiple subchannels in different domains. Consequently, critical features may traverse subchannels with poor states, resulting in performance degradation. To tackle this challenge, we introduce a framework called Feature Allocation for Semantic Transmission (FAST), which offers adaptability to channel fluctuations across both spatial and temporal domains. In particular, an importance evaluator is first developed to assess the importance of various features. In the temporal domain, channel prediction is utilized to estimate future channel state information (CSI). Subsequently, feature allocation is implemented by assigning suitable transmission time slots to different features. Furthermore, we extend FAST to the space-time domain, considering two common scenarios: precoding-free and precoding-based multiple-input multiple-output (MIMO) systems. An important attribute of FAST is its versatility, requiring no intricate fine-tuning. Simulation results demonstrate that this approach significantly enhances the performance of semantic communication systems in image transmission. It retains its superiority even when faced with substantial changes in system configuration.
Abstract:In recent developments, deep learning (DL)-based joint source-channel coding (JSCC) for wireless image transmission has made significant strides in performance enhancement. Nonetheless, the majority of existing DL-based JSCC methods are tailored for scenarios featuring stable channel conditions, notably a fixed signal-to-noise ratio (SNR). This specialization poses a limitation, as their performance tends to wane in practical scenarios marked by highly dynamic channels, given that a fixed SNR inadequately represents the dynamic nature of such channels. In response to this challenge, we introduce a novel solution, namely deep refinement-based JSCC (DRJSCC). This innovative method is designed to seamlessly adapt to channels exhibiting temporal variations. By leveraging instantaneous channel state information (CSI), we dynamically optimize the encoding strategy through re-encoding the channel symbols. This dynamic adjustment ensures that the encoding strategy consistently aligns with the varying channel conditions during the transmission process. Specifically, our approach begins with the division of encoded symbols into multiple blocks, which are transmitted progressively to the receiver. In the event of changing channel conditions, we propose a mechanism to re-encode the remaining blocks, allowing them to adapt to the current channel conditions. Experimental results show that the DRJSCC scheme achieves comparable performance to the other mainstream DL-based JSCC models in stable channel conditions, and also exhibits great robustness against time-varying channels.
Abstract:Recently, semantic communication has been investigated to boost the performance of end-to-end image transmission systems. However, existing semantic approaches are generally based on deep learning and belong to lossy transmission. Consequently, as the receiver continues to transmit received images to another device, the distortion of images accumulates with each transmission. Unfortunately, most recent advances overlook this issue and only consider single-hop scenarios, where images are transmitted only once from a transmitter to a receiver. In this letter, we propose a novel framework of a multi-hop semantic communication system. To address the problem of distortion accumulation, we introduce a novel recursive training method for the encoder and decoder of semantic communication systems. Specifically, the received images are recursively input into the encoder and decoder to retrain the semantic communication system. This empowers the system to handle distorted received images and achieve higher performance. Our extensive simulation results demonstrate that the proposed methods significantly alleviate distortion accumulation in multi-hop semantic communication.
Abstract:In existing semantic communication systems for image transmission, some images are generally reconstructed with considerably low quality. As a result, the reliable transmission of each image cannot be guaranteed, bringing significant uncertainty to semantic communication systems. To address this issue, we propose a novel performance metric to characterize the reliability of semantic communication systems termed semantic distortion outage probability (SDOP), which is defined as the probability of the instantaneous distortion larger than a given target threshold. Then, since the images with lower reconstruction quality are generally less robust and need to be allocated with more communication resources, we propose a novel framework of Semantic Communication with Adaptive chaNnel feedback (SCAN). It can reduce SDOP by adaptively adjusting the overhead of channel feedback for images with different reconstruction qualities, thereby enhancing transmission reliability. To realize SCAN, we first develop a deep learning-enabled semantic communication system for multiple-input multiple-output (MIMO) channels (DeepSC-MIMO) by leveraging the channel state information (CSI) and noise variance in the model design. We then develop a performance evaluator to predict the reconstruction quality of each image at the transmitter by distilling knowledge from DeepSC-MIMO. In this way, images with lower predicted reconstruction quality will be allocated with a longer CSI codeword to guarantee the reconstruction quality. We perform extensive experiments to demonstrate that the proposed scheme can significantly improve the reliability of image transmission while greatly reducing the feedback overhead.
Abstract:With the great success of deep learning (DL) in image classification, speech recognition, and other fields, more and more studies have applied various neural networks (NNs) to wireless resource allocation. Generally speaking, these artificial intelligent (AI) models are trained under some special learning hypotheses, especially that the statistics of the training data are static during the training stage. However, the distribution of channel state information (CSI) is constantly changing in the real-world wireless communication environment. Therefore, it is essential to study effective dynamic DL technologies to solve wireless resource allocation problems. In this paper, we propose a novel framework, named meta-gating, for solving resource allocation problems in an episodically dynamic wireless environment, where the CSI distribution changes over periods and remains constant within each period. The proposed framework, consisting of an inner network and an outer network, aims to adapt to the dynamic wireless environment by achieving three important goals, i.e., seamlessness, quickness and continuity. Specifically, for the former two goals, we propose a training method by combining a model-agnostic meta-learning (MAML) algorithm with an unsupervised learning mechanism. With this training method, the inner network is able to fast adapt to different channel distributions because of the good initialization. As for the goal of continuity, the outer network can learn to evaluate the importance of inner network's parameters under different CSI distributions, and then decide which subset of the inner network should be activated through the gating operation. Additionally, we theoretically analyze the performance of the proposed meta-gating framework.
Abstract:Recently, the ever-increasing demand for bandwidth in multi-modal communication systems requires a paradigm shift. Powered by deep learning, semantic communications are applied to multi-modal scenarios to boost communication efficiency and save communication resources. However, the existing end-to-end neural network (NN) based framework without the channel encoder/decoder is incompatible with modern digital communication systems. Moreover, most end-to-end designs are task-specific and require re-design and re-training for new tasks, which limits their applications. In this paper, we propose a distributed multi-modal semantic communication framework incorporating the conventional channel encoder/decoder. We adopt NN-based semantic encoder and decoder to extract correlated semantic information contained in different modalities, including speech, text, and image. Based on the proposed framework, we further establish a general rate-adaptive coding mechanism for various types of multi-modal semantic tasks. In particular, we utilize unequal error protection based on semantic importance, which is derived by evaluating the distortion bound of each modality. We further formulate and solve an optimization problem that aims at minimizing inference delay while maintaining inference accuracy for semantic tasks. Numerical results show that the proposed mechanism fares better than both conventional communication and existing semantic communication systems in terms of task performance, inference delay, and deployment complexity.
Abstract:The stringent performance requirements of future wireless networks, such as ultra-high data rates, extremely high reliability and low latency, are spurring worldwide studies on defining the next-generation multiple-input multiple-output (MIMO) transceivers. For the design of advanced transceivers in wireless communications, optimization approaches often leading to iterative algorithms have achieved great success for MIMO transceivers. However, these algorithms generally require a large number of iterations to converge, which entails considerable computational complexity and often requires fine-tuning of various parameters. With the development of deep learning, approximating the iterative algorithms with deep neural networks (DNNs) can significantly reduce the computational time. However, DNNs typically lead to black-box solvers, which requires amounts of data and extensive training time. To further overcome these challenges, deep-unfolding has emerged which incorporates the benefits of both deep learning and iterative algorithms, by unfolding the iterative algorithm into a layer-wise structure analogous to DNNs. In this article, we first go through the framework of deep-unfolding for transceiver design with matrix parameters and its recent advancements. Then, some endeavors in applying deep-unfolding approaches in next-generation advanced transceiver design are presented. Moreover, some open issues for future research are highlighted.
Abstract:Although existing semantic communication systems have achieved great success, they have not considered that the channel is time-varying wherein deep fading occurs occasionally. Moreover, the importance of each semantic feature differs from each other. Consequently, the important features may be affected by channel fading and corrupted, resulting in performance degradation. Therefore, higher performance can be achieved by avoiding the transmission of important features when the channel state is poor. In this paper, we propose a scheme of Feature Arrangement for Semantic Transmission (FAST). In particular, we aim to schedule the transmission order of features and transmit important features when the channel state is good. To this end, we first propose a novel metric termed feature priority, which takes into consideration both feature importance and feature robustness. Then, we perform channel prediction at the transmitter side to obtain the future channel state information (CSI). Furthermore, the feature arrangement module is developed based on the proposed feature priority and the predicted CSI by transmitting the prior features under better CSI. Simulation results show that the proposed scheme significantly improves the performance of image transmission compared to existing semantic communication systems without feature arrangement.