Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

We consider the problem of computing tight privacy guarantees for the composition of subsampled differentially private mechanisms. Recent algorithms can numerically compute the privacy parameters to arbitrary precision but must be carefully applied. Our main contribution is to address two common points of confusion. First, some privacy accountants assume that the privacy guarantees for the composition of a subsampled mechanism are determined by self-composing the worst-case datasets for the uncomposed mechanism. We show that this is not true in general. Second, Poisson subsampling is sometimes assumed to have similar privacy guarantees compared to sampling without replacement. We show that the privacy guarantees may in fact differ significantly between the two sampling schemes. In particular, we give an example of hyperparameters that result in $\varepsilon \approx 1$ for Poisson subsampling and $\varepsilon > 10$ for sampling without replacement. This occurs for some parameters that could realistically be chosen for DP-SGD.

Via

The canonical algorithm for differentially private mean estimation is to first clip the samples to a bounded range and then add noise to their empirical mean. Clipping controls the sensitivity and, hence, the variance of the noise that we add for privacy. But clipping also introduces statistical bias. We prove that this tradeoff is inherent: no algorithm can simultaneously have low bias, low variance, and low privacy loss for arbitrary distributions. On the positive side, we show that unbiased mean estimation is possible under approximate differential privacy if we assume that the distribution is symmetric. Furthermore, we show that, even if we assume that the data is sampled from a Gaussian, unbiased mean estimation is impossible under pure or concentrated differential privacy.

Via