Abstract:Code-switching is a pervasive phenomenon in multilingual communication, yet the robustness of large language models (LLMs) in mixed-language settings remains insufficiently understood. In this work, we present a comprehensive evaluation of LLM capabilities in understanding, reasoning over, and generating code-switched text. We introduce CodeMixQA a novel benchmark with high-quality human annotations, comprising 16 diverse parallel code-switched language-pair variants that span multiple geographic regions and code-switching patterns, and include both original scripts and their transliterated forms. Using this benchmark, we analyze the reasoning behavior of LLMs on code-switched question-answering tasks, shedding light on how models process and reason over mixed-language inputs. We further conduct a systematic evaluation of LLM-generated synthetic code-switched text, focusing on both naturalness and semantic fidelity, and uncover key limitations in current generation capabilities. Our findings reveal persistent challenges in both reasoning and generation under code-switching conditions and provide actionable insights for building more robust multilingual LLMs. We release the dataset and code as open source.
Abstract:Realignment is a promising strategy to improve cross-lingual transfer in multilingual language models. However, empirical results are mixed and often unreliable, particularly for typologically distant or low-resource languages (LRLs) compared to English. Moreover, word realignment tools often rely on high-quality parallel data, which can be scarce or noisy for many LRLs. In this work, we conduct an extensive empirical study to investigate whether realignment truly benefits from using all available languages, or if strategically selected subsets can offer comparable or even improved cross-lingual transfer, and study the impact on LRLs. Our controlled experiments show that realignment can be particularly effective for LRLs and that using carefully selected, linguistically diverse subsets can match full multilingual alignment, and even outperform it for unseen LRLs. This indicates that effective realignment does not require exhaustive language coverage and can reduce data collection overhead, while remaining both efficient and robust when guided by informed language selection.