Abstract:Understanding and controlling the informational complexity of neural networks is a central challenge in machine learning, with implications for generalization, optimization, and model capacity. While most approaches rely on entropy-based loss functions and statistical metrics, these measures often fail to capture deeper, causally relevant algorithmic regularities embedded in network structure. We propose a shift toward algorithmic information theory, using Binarized Neural Networks (BNNs) as a first proxy. Grounded in algorithmic probability (AP) and the universal distribution it defines, our approach characterizes learning dynamics through a formal, causally grounded lens. We apply the Block Decomposition Method (BDM) -- a scalable approximation of algorithmic complexity based on AP -- and demonstrate that it more closely tracks structural changes during training than entropy, consistently exhibiting stronger correlations with training loss across varying model sizes and randomized training runs. These results support the view of training as a process of algorithmic compression, where learning corresponds to the progressive internalization of structured regularities. In doing so, our work offers a principled estimate of learning progression and suggests a framework for complexity-aware learning and regularization, grounded in first principles from information theory, complexity, and computability.
Abstract:Understanding and controlling the informational complexity of neural networks is a central challenge in machine learning, with implications for generalization, optimization, and model capacity. While most approaches rely on entropy-based loss functions and statistical metrics, these measures often fail to capture deeper, causally relevant algorithmic regularities embedded in network structure. We propose a shift toward algorithmic information theory, using Binarized Neural Networks (BNNs) as a first proxy. Grounded in algorithmic probability (AP) and the universal distribution it defines, our approach characterizes learning dynamics through a formal, causally grounded lens. We apply the Block Decomposition Method (BDM) -- a scalable approximation of algorithmic complexity based on AP -- and demonstrate that it more closely tracks structural changes during training than entropy, consistently exhibiting stronger correlations with training loss across varying model sizes and randomized training runs. These results support the view of training as a process of algorithmic compression, where learning corresponds to the progressive internalization of structured regularities. In doing so, our work offers a principled estimate of learning progression and suggests a framework for complexity-aware learning and regularization, grounded in first principles from information theory, complexity, and computability.
Abstract:The AI alignment problem, which focusses on ensuring that artificial intelligence (AI), including AGI and ASI, systems act according to human values, presents profound challenges. With the progression from narrow AI to Artificial General Intelligence (AGI) and Superintelligence, fears about control and existential risk have escalated. Here, we investigate whether embracing inevitable AI misalignment can be a contingent strategy to foster a dynamic ecosystem of competing agents as a viable path to steer them in more human-aligned trends and mitigate risks. We explore how misalignment may serve and should be promoted as a counterbalancing mechanism to team up with whichever agents are most aligned to human interests, ensuring that no single system dominates destructively. The main premise of our contribution is that misalignment is inevitable because full AI-human alignment is a mathematical impossibility from Turing-complete systems, which we also offer as a proof in this contribution, a feature then inherited to AGI and ASI systems. We introduce a change-of-opinion attack test based on perturbation and intervention analysis to study how humans and agents may change or neutralise friendly and unfriendly AIs through cooperation and competition. We show that open models are more diverse and that most likely guardrails implemented in proprietary models are successful at controlling some of the agents' range of behaviour with positive and negative consequences while closed systems are more steerable and can also be used against proprietary AI systems. We also show that human and AI intervention has different effects hence suggesting multiple strategies.
Abstract:The AI alignment problem, which focusses on ensuring that artificial intelligence (AI), including AGI and ASI, systems act according to human values, presents profound challenges. With the progression from narrow AI to Artificial General Intelligence (AGI) and Superintelligence, fears about control and existential risk have escalated. This paper demonstrates that achieving complete alignment is inherently unattainable due to mathematical principles rooted in the foundations of predicate logic and computability, in particular Turing's computational universality, G\"odel's incompleteness and Chaitin's randomness. Instead, we argue that embracing AI misalignment or agent's `neurodivergence' as a contingent strategy, defined as fostering a dynamic ecosystem of competing, partially aligned agents, is a possible only viable path to mitigate risks. Through mathematical proofs and an experimental design, we explore how misalignment may serve and should be promoted as a counterbalancing mechanism to team up with whichever agents are most aligned AI to human values, ensuring that no single system dominates destructively. The main premise of our contribution is that misalignment is inevitable because full AI-human alignment is a mathematical impossibility from Turing-complete systems which we also prove in this paper, a feature then inherited to AGI and ASI systems. We introduce and test `change-of-opinion' attacks based on this kind of perturbation and intervention analysis to study how agents may neutralise friendly or unfriendly AIs through cooperation, competition or malice.
Abstract:We introduce an open-ended test grounded in algorithmic probability that can avoid benchmark contamination in the quantitative evaluation of frontier models in the context of their Artificial General Intelligence (AGI) and Superintelligence (ASI) claims. Unlike other tests, this test does not rely on statistical compression methods (such as GZIP or LZW), which are more closely related to Shannon entropy than to Kolmogorov complexity. The test challenges aspects related to features of intelligence of fundamental nature such as synthesis and model creation in the context of inverse problems (generating new knowledge from observation). We argue that metrics based on model abstraction and optimal Bayesian inference for planning can provide a robust framework for testing intelligence, including natural intelligence (human and animal), narrow AI, AGI, and ASI. Our results show no clear evidence of LLM convergence towards a defined level of intelligence, particularly AGI or ASI. We found that LLM model versions tend to be fragile and incremental, as new versions may perform worse than older ones, with progress largely driven by the size of training data. The results were compared with a hybrid neurosymbolic approach that theoretically guarantees model convergence from optimal inference based on the principles of algorithmic probability and Kolmogorov complexity. The method outperforms LLMs in a proof-of-concept on short binary sequences. Our findings confirm suspicions regarding the fundamental limitations of LLMs, exposing them as systems optimised for the perception of mastery over human language. Progress among different LLM versions from the same developers was found to be inconsistent and limited, particularly in the absence of a solid symbolic counterpart.
Abstract:Based on the principles of information theory, measure theory, and theoretical computer science, we introduce a univariate signal deconvolution method with a wide range of applications to coding theory, particularly in zero-knowledge one-way communication channels, such as in deciphering messages from unknown generating sources about which no prior knowledge is available and to which no return message can be sent. Our multidimensional space reconstruction method from an arbitrary received signal is proven to be agnostic vis-a-vis the encoding-decoding scheme, computation model, programming language, formal theory, the computable (or semi-computable) method of approximation to algorithmic complexity, and any arbitrarily chosen (computable) probability measure of the events. The method derives from the principles of an approach to Artificial General Intelligence capable of building a general-purpose model of models independent of any arbitrarily assumed prior probability distribution. We argue that this optimal and universal method of decoding non-random data has applications to signal processing, causal deconvolution, topological and geometric properties encoding, cryptography, and bio- and technosignature detection.
Abstract:Recent advances in machine learning and AI, including Generative AI and LLMs, are disrupting technological innovation, product development, and society as a whole. AI's contribution to technology can come from multiple approaches that require access to large training data sets and clear performance evaluation criteria, ranging from pattern recognition and classification to generative models. Yet, AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access. Generative AI, in general, and Large Language Models in particular, may represent an opportunity to augment and accelerate the scientific discovery of fundamental deep science with quantitative models. Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery, including self-driven hypothesis generation and open-ended autonomous exploration of the hypothesis space. Integrating AI-driven automation into the practice of science would mitigate current problems, including the replication of findings, systematic production of data, and ultimately democratisation of the scientific process. Realising these possibilities requires a vision for augmented AI coupled with a diversity of AI approaches able to deal with fundamental aspects of causality analysis and model discovery while enabling unbiased search across the space of putative explanations. These advances hold the promise to unleash AI's potential for searching and discovering the fundamental structure of our world beyond what human scientists have been able to achieve. Such a vision would push the boundaries of new fundamental science rather than automatize current workflows and instead open doors for technological innovation to tackle some of the greatest challenges facing humanity today.
Abstract:We introduce a general-purpose univariate signal deconvolution method based on the principles of an approach to Artificial General Intelligence. This approach is based on a generative model that combines information theory and algorithmic probability that required a large calculation of an estimation of a `universal distribution' to build a general-purpose model of models independent of probability distributions. This was used to investigate how non-random data may encode information about the physical properties such as dimension and length scales in which a signal or message may have been originally encoded, embedded, or generated. This multidimensional space reconstruction method is based on information theory and algorithmic probability, and it is agnostic, but not independent, with respect to the chosen computable or semi-computable approximation method or encoding-decoding scheme. The results presented in this paper are useful for applications in coding theory, particularly in zero-knowledge one-way communication channels, such as in deciphering messages sent by generating sources of unknown nature for which no prior knowledge is available. We argue that this can have strong potential for cryptography, signal processing, causal deconvolution, life, and techno signature detection.
Abstract:When mining large datasets in order to predict new data, limitations of the principles behind statistical machine learning pose a serious challenge not only to the Big Data deluge, but also to the traditional assumptions that data generating processes are biased toward low algorithmic complexity. Even when one assumes an underlying algorithmic-informational bias toward simplicity in finite dataset generators, we show that fully automated, with or without access to pseudo-random generators, computable learning algorithms, in particular those of statistical nature used in current approaches to machine learning (including deep learning), can always be deceived, naturally or artificially, by sufficiently large datasets. In particular, we demonstrate that, for every finite learning algorithm, there is a sufficiently large dataset size above which the algorithmic probability of an unpredictable deceiver is an upper bound (up to a multiplicative constant that only depends on the learning algorithm) for the algorithmic probability of any other larger dataset. In other words, very large and complex datasets are as likely to deceive learning algorithms into a "simplicity bubble" as any other particular dataset. These deceiving datasets guarantee that any prediction will diverge from the high-algorithmic-complexity globally optimal solution while converging toward the low-algorithmic-complexity locally optimal solution. We discuss the framework and empirical conditions for circumventing this deceptive phenomenon, moving away from statistical machine learning towards a stronger type of machine learning based on, or motivated by, the intrinsic power of algorithmic information theory and computability theory.