Abstract:The AI alignment problem, which focusses on ensuring that artificial intelligence (AI), including AGI and ASI, systems act according to human values, presents profound challenges. With the progression from narrow AI to Artificial General Intelligence (AGI) and Superintelligence, fears about control and existential risk have escalated. Here, we investigate whether embracing inevitable AI misalignment can be a contingent strategy to foster a dynamic ecosystem of competing agents as a viable path to steer them in more human-aligned trends and mitigate risks. We explore how misalignment may serve and should be promoted as a counterbalancing mechanism to team up with whichever agents are most aligned to human interests, ensuring that no single system dominates destructively. The main premise of our contribution is that misalignment is inevitable because full AI-human alignment is a mathematical impossibility from Turing-complete systems, which we also offer as a proof in this contribution, a feature then inherited to AGI and ASI systems. We introduce a change-of-opinion attack test based on perturbation and intervention analysis to study how humans and agents may change or neutralise friendly and unfriendly AIs through cooperation and competition. We show that open models are more diverse and that most likely guardrails implemented in proprietary models are successful at controlling some of the agents' range of behaviour with positive and negative consequences while closed systems are more steerable and can also be used against proprietary AI systems. We also show that human and AI intervention has different effects hence suggesting multiple strategies.
Abstract:The AI alignment problem, which focusses on ensuring that artificial intelligence (AI), including AGI and ASI, systems act according to human values, presents profound challenges. With the progression from narrow AI to Artificial General Intelligence (AGI) and Superintelligence, fears about control and existential risk have escalated. This paper demonstrates that achieving complete alignment is inherently unattainable due to mathematical principles rooted in the foundations of predicate logic and computability, in particular Turing's computational universality, G\"odel's incompleteness and Chaitin's randomness. Instead, we argue that embracing AI misalignment or agent's `neurodivergence' as a contingent strategy, defined as fostering a dynamic ecosystem of competing, partially aligned agents, is a possible only viable path to mitigate risks. Through mathematical proofs and an experimental design, we explore how misalignment may serve and should be promoted as a counterbalancing mechanism to team up with whichever agents are most aligned AI to human values, ensuring that no single system dominates destructively. The main premise of our contribution is that misalignment is inevitable because full AI-human alignment is a mathematical impossibility from Turing-complete systems which we also prove in this paper, a feature then inherited to AGI and ASI systems. We introduce and test `change-of-opinion' attacks based on this kind of perturbation and intervention analysis to study how agents may neutralise friendly or unfriendly AIs through cooperation, competition or malice.
Abstract:We introduce an open-ended test grounded in algorithmic probability that can avoid benchmark contamination in the quantitative evaluation of frontier models in the context of their Artificial General Intelligence (AGI) and Superintelligence (ASI) claims. Unlike other tests, this test does not rely on statistical compression methods (such as GZIP or LZW), which are more closely related to Shannon entropy than to Kolmogorov complexity. The test challenges aspects related to features of intelligence of fundamental nature such as synthesis and model creation in the context of inverse problems (generating new knowledge from observation). We argue that metrics based on model abstraction and optimal Bayesian inference for planning can provide a robust framework for testing intelligence, including natural intelligence (human and animal), narrow AI, AGI, and ASI. Our results show no clear evidence of LLM convergence towards a defined level of intelligence, particularly AGI or ASI. We found that LLM model versions tend to be fragile and incremental, as new versions may perform worse than older ones, with progress largely driven by the size of training data. The results were compared with a hybrid neurosymbolic approach that theoretically guarantees model convergence from optimal inference based on the principles of algorithmic probability and Kolmogorov complexity. The method outperforms LLMs in a proof-of-concept on short binary sequences. Our findings confirm suspicions regarding the fundamental limitations of LLMs, exposing them as systems optimised for the perception of mastery over human language. Progress among different LLM versions from the same developers was found to be inconsistent and limited, particularly in the absence of a solid symbolic counterpart.