Abstract:Personality detection aims to measure an individual's corresponding personality traits through their social media posts. The advancements in Large Language Models (LLMs) offer novel perspectives for personality detection tasks. Existing approaches enhance personality trait analysis by leveraging LLMs to extract semantic information from textual posts as prompts, followed by training classifiers for categorization. However, accurately classifying personality traits remains challenging due to the inherent complexity of human personality and subtle inter-trait distinctions. Moreover, prompt-based methods often exhibit excessive dependency on expert-crafted knowledge without autonomous pattern-learning capacity. To address these limitations, we view personality detection as a ranking task rather than a classification and propose a corresponding reinforcement learning training paradigm. First, we employ supervised fine-tuning (SFT) to establish personality trait ranking capabilities while enforcing standardized output formats, creating a robust initialization. Subsequently, we introduce Group Relative Policy Optimization (GRPO) with a specialized ranking-based reward function. Unlike verification tasks with definitive solutions, personality assessment involves subjective interpretations and blurred boundaries between trait categories. Our reward function explicitly addresses this challenge by training LLMs to learn optimal answer rankings. Comprehensive experiments have demonstrated that our method achieves state-of-the-art performance across multiple personality detection benchmarks.
Abstract:Convolutional neural networks and supervised learning have achieved remarkable success in various fields but are limited by the need for large annotated datasets. Few-shot learning (FSL) addresses this limitation by enabling models to generalize from only a few labeled examples. Transductive few-shot learning (TFSL) enhances FSL by leveraging both labeled and unlabeled data, though it faces challenges like the hubness problem. To overcome these limitations, we propose the Unbiased Max-Min Embedding Classification (UMMEC) Method, which addresses the key challenges in few-shot learning through three innovative contributions. First, we introduce a decentralized covariance matrix to mitigate the hubness problem, ensuring a more uniform distribution of embeddings. Second, our method combines local alignment and global uniformity through adaptive weighting and nonlinear transformation, balancing intra-class clustering with inter-class separation. Third, we employ a Variational Sinkhorn Few-Shot Classifier to optimize the distances between samples and class prototypes, enhancing classification accuracy and robustness. These combined innovations allow the UMMEC method to achieve superior performance with minimal labeled data. Our UMMEC method significantly improves classification performance with minimal labeled data, advancing the state-of-the-art in TFSL.