Abstract:Optical coherence tomography (OCT) can perform non-invasive high-resolution three-dimensional (3D) imaging and has been widely used in biomedical fields, while it is inevitably affected by coherence speckle noise which degrades OCT imaging performance and restricts its applications. Here we present a novel speckle-free OCT imaging strategy, named toward-ground-truth OCT (tGT-OCT), that utilizes unsupervised 3D deep-learning processing and leverages OCT 3D imaging features to achieve speckle-free OCT imaging. Specifically, our proposed tGT-OCT utilizes an unsupervised 3D-convolution deep-learning network trained using random 3D volumetric data to distinguish and separate speckle from real structures in 3D imaging volumetric space; moreover, tGT-OCT effectively further reduces speckle noise and reveals structures that would otherwise be obscured by speckle noise while preserving spatial resolution. Results derived from different samples demonstrated the high-quality speckle-free 3D imaging performance of tGT-OCT and its advancement beyond the previous state-of-the-art.
Abstract:Recently, large language models (LLMs) have drawn extensive attention from academia and the public, due to the advent of the ChatGPT. While LLMs show their astonishing ability in text generation for various tasks, privacy concerns limit their usage in real-life businesses. More specifically, either the user's inputs (the user sends the query to the model-hosting server) or the model (the user downloads the complete model) itself will be revealed during the usage. Vertical federated learning (VFL) is a promising solution to this kind of problem. It protects both the user's input and the knowledge of the model by splitting the model into a bottom part and a top part, which is maintained by the user and the model provider, respectively. However, in this paper, we demonstrate that in LLMs, VFL fails to protect the user input since it is simple and cheap to reconstruct the input from the intermediate embeddings. Experiments show that even with a commercial GPU, the input sentence can be reconstructed in only one second. We also discuss several possible solutions to enhance the privacy of vertical federated LLMs.
Abstract:As a privacy-preserving method for implementing Vertical Federated Learning, Split Learning has been extensively researched. However, numerous studies have indicated that the privacy-preserving capability of Split Learning is insufficient. In this paper, we primarily focus on label inference attacks in Split Learning under regression setting, which are mainly implemented through the gradient inversion method. To defend against label inference attacks, we propose Random Label Extension (RLE), where labels are extended to obfuscate the label information contained in the gradients, thereby preventing the attacker from utilizing gradients to train an attack model that can infer the original labels. To further minimize the impact on the original task, we propose Model-based adaptive Label Extension (MLE), where original labels are preserved in the extended labels and dominate the training process. The experimental results show that compared to the basic defense methods, our proposed defense methods can significantly reduce the attack model's performance while preserving the original task's performance.
Abstract:Most existing federated learning algorithms are based on the vanilla FedAvg scheme. However, with the increase of data complexity and the number of model parameters, the amount of communication traffic and the number of iteration rounds for training such algorithms increases significantly, especially in non-independently and homogeneously distributed scenarios, where they do not achieve satisfactory performance. In this work, we propose FedND: federated learning with noise distillation. The main idea is to use knowledge distillation to optimize the model training process. In the client, we propose a self-distillation method to train the local model. In the server, we generate noisy samples for each client and use them to distill other clients. Finally, the global model is obtained by the aggregation of local models. Experimental results show that the algorithm achieves the best performance and is more communication-efficient than state-of-the-art methods.
Abstract:Split learning is a simple solution for Vertical Federated Learning (VFL), which has drawn substantial attention in both research and application due to its simplicity and efficiency. However, communication efficiency is still a crucial issue for split learning. In this paper, we investigate multiple communication reduction methods for split learning, including cut layer size reduction, top-k sparsification, quantization, and L1 regularization. Through analysis of the cut layer size reduction and top-k sparsification, we further propose randomized top-k sparsification, to make the model generalize and converge better. This is done by selecting top-k elements with a large probability while also having a small probability to select non-top-k elements. Empirical results show that compared with other communication-reduction methods, our proposed randomized top-k sparsification achieves a better model performance under the same compression level.
Abstract:As a practical privacy-preserving learning method, split learning has drawn much attention in academia and industry. However, its security is constantly being questioned since the intermediate results are shared during training and inference. In this paper, we focus on the privacy leakage problem caused by the trained split model, i.e., the attacker can use a few labeled samples to fine-tune the bottom model, and gets quite good performance. To prevent such kind of privacy leakage, we propose the potential energy loss to make the output of the bottom model become a more `complicated' distribution, by pushing outputs of the same class towards the decision boundary. Therefore, the adversary suffers a large generalization error when fine-tuning the bottom model with only a few leaked labeled samples. Experiment results show that our method significantly lowers the attacker's fine-tuning accuracy, making the split model more resilient to label leakage.
Abstract:With the increasing demands for privacy protection, privacy-preserving machine learning has been drawing much attention in both academia and industry. However, most existing methods have their limitations in practical applications. On the one hand, although most cryptographic methods are provable secure, they bring heavy computation and communication. On the other hand, the security of many relatively efficient private methods (e.g., federated learning and split learning) is being questioned, since they are non-provable secure. Inspired by previous work on privacy-preserving machine learning, we build a privacy-preserving machine learning framework by combining random permutation and arithmetic secret sharing via our compute-after-permutation technique. Since our method reduces the cost for element-wise function computation, it is more efficient than existing cryptographic methods. Moreover, by adopting distance correlation as a metric for privacy leakage, we demonstrate that our method is more secure than previous non-provable secure methods. Overall, our proposal achieves a good balance between security and efficiency. Experimental results show that our method not only is up to 6x faster and reduces up to 85% network traffic compared with state-of-the-art cryptographic methods, but also leaks less privacy during the training process compared with non-provable secure methods.
Abstract:With the increasing demands for privacy protection, many privacy-preserving machine learning systems were proposed in recent years. However, most of them cannot be put into production due to their slow training and inference speed caused by the heavy cost of homomorphic encryption and secure multiparty computation(MPC) methods. To circumvent this, I proposed a privacy definition which is suitable for large amount of data in machine learning tasks. Based on that, I showed that random transformations like linear transformation and random permutation can well protect privacy. Merging random transformations and arithmetic sharing together, I designed a framework for private machine learning with high efficiency and low computation cost.