Abstract:We address the problem of uncertainty quantification and propose measures of total, aleatoric, and epistemic uncertainty based on a known decomposition of (strictly) proper scoring rules, a specific type of loss function, into a divergence and an entropy component. This leads to a flexible framework for uncertainty quantification that can be instantiated with different losses (scoring rules), which makes it possible to tailor uncertainty quantification to the use case at hand. We show that this flexibility is indeed advantageous. In particular, we analyze the task of selective prediction and show that the scoring rule should ideally match the task loss. In addition, we perform experiments on two other common tasks. For out-of-distribution detection, our results confirm that a widely used measure of epistemic uncertainty, mutual information, performs best. Moreover, in the setting of active learning, our measure of epistemic uncertainty based on the zero-one-loss consistently outperforms other uncertainty measures.
Abstract:Predictions in the form of sets of probability distributions, so-called credal sets, provide a suitable means to represent a learner's epistemic uncertainty. In this paper, we propose a theoretically grounded approach to credal prediction based on the statistical notion of relative likelihood: The target of prediction is the set of all (conditional) probability distributions produced by the collection of plausible models, namely those models whose relative likelihood exceeds a specified threshold. This threshold has an intuitive interpretation and allows for controlling the trade-off between correctness and precision of credal predictions. We tackle the problem of approximating credal sets defined in this way by means of suitably modified ensemble learning techniques. To validate our approach, we illustrate its effectiveness by experiments on benchmark datasets demonstrating superior uncertainty representation without compromising predictive performance. We also compare our method against several state-of-the-art baselines in credal prediction.
Abstract:Conformal prediction (CP) is a popular frequentist framework for representing uncertainty by providing prediction sets that guarantee coverage of the true label with a user-adjustable probability. In most applications, CP operates on confidence scores coming from a standard (first-order) probabilistic predictor (e.g., softmax outputs). Second-order predictors, such as credal set predictors or Bayesian models, are also widely used for uncertainty quantification and are known for their ability to represent both aleatoric and epistemic uncertainty. Despite their popularity, there is still an open question on ``how they can be incorporated into CP''. In this paper, we discuss the desiderata for CP when valid second-order predictions are available. We then introduce Bernoulli prediction sets (BPS), which produce the smallest prediction sets that ensure conditional coverage in this setting. When given first-order predictions, BPS reduces to the well-known adaptive prediction sets (APS). Furthermore, when the validity assumption on the second-order predictions is compromised, we apply conformal risk control to obtain a marginal coverage guarantee while still accounting for epistemic uncertainty.
Abstract:Recent studies demonstrate that Large Language Models (LLMs) are vulnerable to different prompt-based attacks, generating harmful content or sensitive information. Both closed-source and open-source LLMs are underinvestigated for these attacks. This paper studies effective prompt injection attacks against the $\mathbf{14}$ most popular open-source LLMs on five attack benchmarks. Current metrics only consider successful attacks, whereas our proposed Attack Success Probability (ASP) also captures uncertainty in the model's response, reflecting ambiguity in attack feasibility. By comprehensively analyzing the effectiveness of prompt injection attacks, we propose a simple and effective hypnotism attack; results show that this attack causes aligned language models, including Stablelm2, Mistral, Openchat, and Vicuna, to generate objectionable behaviors, achieving around $90$% ASP. They also indicate that our ignore prefix attacks can break all $\mathbf{14}$ open-source LLMs, achieving over $60$% ASP on a multi-categorical dataset. We find that moderately well-known LLMs exhibit higher vulnerability to prompt injection attacks, highlighting the need to raise public awareness and prioritize efficient mitigation strategies.
Abstract:Uncertainty quantification (UQ) is crucial in machine learning, yet most (axiomatic) studies of uncertainty measures focus on classification, leaving a gap in regression settings with limited formal justification and evaluations. In this work, we introduce a set of axioms to rigorously assess measures of aleatoric, epistemic, and total uncertainty in supervised regression. By utilizing a predictive exponential family, we can generalize commonly used approaches for uncertainty representation and corresponding uncertainty measures. More specifically, we analyze the widely used entropy- and variance-based measures regarding limitations and challenges. Our findings provide a principled foundation for UQ in regression, offering theoretical insights and practical guidelines for reliable uncertainty assessment.
Abstract:The ability to generate explanations that are understood by explainees is the quintessence of explainable artificial intelligence. Since understanding depends on the explainee's background and needs, recent research has focused on co-constructive explanation dialogues, where the explainer continuously monitors the explainee's understanding and adapts explanations dynamically. We investigate the ability of large language models (LLMs) to engage as explainers in co-constructive explanation dialogues. In particular, we present a user study in which explainees interact with LLMs, of which some have been instructed to explain a predefined topic co-constructively. We evaluate the explainees' understanding before and after the dialogue, as well as their perception of the LLMs' co-constructive behavior. Our results indicate that current LLMs show some co-constructive behaviors, such as asking verification questions, that foster the explainees' engagement and can improve understanding of a topic. However, their ability to effectively monitor the current understanding and scaffold the explanations accordingly remains limited.
Abstract:Additive feature explanations rely primarily on game-theoretic notions such as the Shapley value by viewing features as cooperating players. The Shapley value's popularity in and outside of explainable AI stems from its axiomatic uniqueness. However, its computational complexity severely limits practicability. Most works investigate the uniform approximation of all features' Shapley values, needlessly consuming samples for insignificant features. In contrast, identifying the $k$ most important features can already be sufficiently insightful and yields the potential to leverage algorithmic opportunities connected to the field of multi-armed bandits. We propose Comparable Marginal Contributions Sampling (CMCS), a method for the top-$k$ identification problem utilizing a new sampling scheme taking advantage of correlated observations. We conduct experiments to showcase the efficacy of our method in compared to competitive baselines. Our empirical findings reveal that estimation quality for the approximate-all problem does not necessarily transfer to top-$k$ identification and vice versa.
Abstract:Quantification learning is the task of predicting the label distribution of a set of instances. We study this problem in the context of graph-structured data, where the instances are vertices. Previously, this problem has only been addressed via node clustering methods. In this paper, we extend the popular Adjusted Classify & Count (ACC) method to graphs. We show that the prior probability shift assumption upon which ACC relies is often not fulfilled and propose two novel graph quantification techniques: Structural importance sampling (SIS) makes ACC applicable in graph domains with covariate shift. Neighborhood-aware ACC improves quantification in the presence of non-homophilic edges. We show the effectiveness of our techniques on multiple graph quantification tasks.
Abstract:This position paper argues that, to its detriment, transparency research overlooks many foundational concepts of artificial intelligence. Here, we focus on uncertainty quantification -- in the context of ante-hoc interpretability and counterfactual explainability -- showing how its adoption could address key challenges in the field. First, we posit that uncertainty and ante-hoc interpretability offer complementary views of the same underlying idea; second, we assert that uncertainty provides a principled unifying framework for counterfactual explainability. Consequently, inherently transparent models can benefit from human-centred explanatory insights -- like counterfactuals -- which are otherwise missing. At a higher level, integrating artificial intelligence fundamentals into transparency research promises to yield more reliable, robust and understandable predictive models.
Abstract:The accurate representation of epistemic uncertainty is a challenging yet essential task in machine learning. A widely used representation corresponds to convex sets of probabilistic predictors, also known as credal sets. One popular way of constructing these credal sets is via ensembling or specialized supervised learning methods, where the epistemic uncertainty can be quantified through measures such as the set size or the disagreement among members. In principle, these sets should contain the true data-generating distribution. As a necessary condition for this validity, we adopt the strongest notion of calibration as a proxy. Concretely, we propose a novel statistical test to determine whether there is a convex combination of the set's predictions that is calibrated in distribution. In contrast to previous methods, our framework allows the convex combination to be instance dependent, recognizing that different ensemble members may be better calibrated in different regions of the input space. Moreover, we learn this combination via proper scoring rules, which inherently optimize for calibration. Building on differentiable, kernel-based estimators of calibration errors, we introduce a nonparametric testing procedure and demonstrate the benefits of capturing instance-level variability on of synthetic and real-world experiments.