Abstract:Perturbation-based explanations are widely utilized to enhance the transparency of modern machine-learning models. However, their reliability is often compromised by the unknown model behavior under the specific perturbations used. This paper investigates the relationship between uncertainty calibration - the alignment of model confidence with actual accuracy - and perturbation-based explanations. We show that models frequently produce unreliable probability estimates when subjected to explainability-specific perturbations and theoretically prove that this directly undermines explanation quality. To address this, we introduce ReCalX, a novel approach to recalibrate models for improved perturbation-based explanations while preserving their original predictions. Experiments on popular computer vision models demonstrate that our calibration strategy produces explanations that are more aligned with human perception and actual object locations.
Abstract:Reliable uncertainty calibration is essential for safely deploying deep neural networks in high-stakes applications. Deep neural networks are known to exhibit systematic overconfidence, especially under distribution shifts. Although foundation models such as ConvNeXt, EVA and BEiT have demonstrated significant improvements in predictive performance, their calibration properties remain underexplored. This paper presents a comprehensive investigation into the calibration behavior of foundation models, revealing insights that challenge established paradigms. Our empirical analysis shows that these models tend to be underconfident in in-distribution predictions, resulting in higher calibration errors, while demonstrating improved calibration under distribution shifts. Furthermore, we demonstrate that foundation models are highly responsive to post-hoc calibration techniques in the in-distribution setting, enabling practitioners to effectively mitigate underconfidence bias. However, these methods become progressively less reliable under severe distribution shifts and can occasionally produce counterproductive results. Our findings highlight the complex, non-monotonic effects of architectural and training innovations on calibration, challenging established narratives of continuous improvement.
Abstract:We study the problem of monitoring machine learning models under gradual distribution shifts, where circumstances change slowly over time, often leading to unnoticed yet significant declines in accuracy. To address this, we propose Incremental Uncertainty-aware Performance Monitoring (IUPM), a novel label-free method that estimates performance changes by modeling gradual shifts using optimal transport. In addition, IUPM quantifies the uncertainty in the performance prediction and introduces an active labeling procedure to restore a reliable estimate under a limited labeling budget. Our experiments show that IUPM outperforms existing performance estimation baselines in various gradual shift scenarios and that its uncertainty awareness guides label acquisition more effectively compared to other strategies.
Abstract:Flexible industrial production systems will play a central role in the future of manufacturing due to higher product individualization and customization. A key component in such systems is the robotic grasping of known or unknown objects in random positions. Real-world applications often come with challenges that might not be considered in grasping solutions tested in simulation or lab settings. Partial occlusion of the target object is the most prominent. Examples of occlusion can be supporting structures in the camera's field of view, sensor imprecision, or parts occluding each other due to the production process. In all these cases, the resulting lack of information leads to shortcomings in calculating grasping points. In this paper, we present an algorithm to reconstruct the missing information. Our inpainting solution facilitates the real-world utilization of robust object matching approaches for grasping point calculation. We demonstrate the benefit of our solution by enabling an existing grasping system embedded in a real-world industrial application to handle occlusions in the input. With our solution, we drastically decrease the number of objects discarded by the process.
Abstract:The evaluation of image generators remains a challenge due to the limitations of traditional metrics in providing nuanced insights into specific image regions. This is a critical problem as not all regions of an image may be learned with similar ease. In this work, we propose a novel approach to disentangle the cosine similarity of mean embeddings into the product of cosine similarities for individual pixel clusters via central kernel alignment. Consequently, we can quantify the contribution of the cluster-wise performance to the overall image generation performance. We demonstrate how this enhances the explainability and the likelihood of identifying pixel regions of model misbehavior across various real-world use cases.
Abstract:Monitoring and maintaining machine learning models are among the most critical challenges in translating recent advances in the field into real-world applications. However, current monitoring methods lack the capability of provide actionable insights answering the question of why the performance of a particular model really degraded. In this work, we propose a novel approach to explain the behavior of a black-box model under feature shifts by attributing an estimated performance change to interpretable input characteristics. We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation (XPE). We analyze the underlying assumptions and demonstrate the superiority of our approach over several baselines on different data sets across various data modalities such as images, audio, and tabular data. We also indicate how the generated results can lead to valuable insights, enabling explanatory model monitoring by revealing potential root causes for model deterioration and guiding toward actionable countermeasures.
Abstract:Many real-world applications require machine-learning models to be able to deal with non-stationary data distributions and thus learn autonomously over an extended period of time, often in an online setting. One of the main challenges in this scenario is the so-called catastrophic forgetting (CF) for which the learning model tends to focus on the most recent tasks while experiencing predictive degradation on older ones. In the online setting, the most effective solutions employ a fixed-size memory buffer to store old samples used for replay when training on new tasks. Many approaches have been presented to tackle this problem. However, it is not clear how predictive uncertainty information for memory management can be leveraged in the most effective manner and conflicting strategies are proposed to populate the memory. Are the easiest-to-forget or the easiest-to-remember samples more effective in combating CF? Starting from the intuition that predictive uncertainty provides an idea of the samples' location in the decision space, this work presents an in-depth analysis of different uncertainty estimates and strategies for populating the memory. The investigation provides a better understanding of the characteristics data points should have for alleviating CF. Then, we propose an alternative method for estimating predictive uncertainty via the generalised variance induced by the negative log-likelihood. Finally, we demonstrate that the use of predictive uncertainty measures helps in reducing CF in different settings.
Abstract:Using feature attributions for post-hoc explanations is a common practice to understand and verify the predictions of opaque machine learning models. Despite the numerous techniques available, individual methods often produce inconsistent and unstable results, putting their overall reliability into question. In this work, we aim to systematically improve the quality of feature attributions by combining multiple explanations across distinct methods or their variations. For this purpose, we propose a novel approach to derive optimal convex combinations of feature attributions that yield provable improvements of desired quality criteria such as robustness or faithfulness to the model behavior. Through extensive experiments involving various model architectures and popular feature attribution techniques, we demonstrate that our combination strategy consistently outperforms individual methods and existing baselines.
Abstract:Given the ability to model more realistic and dynamic problems, Federated Continual Learning (FCL) has been increasingly investigated recently. A well-known problem encountered in this setting is the so-called catastrophic forgetting, for which the learning model is inclined to focus on more recent tasks while forgetting the previously learned knowledge. The majority of the current approaches in FCL propose generative-based solutions to solve said problem. However, this setting requires multiple training epochs over the data, implying an offline setting where datasets are stored locally and remain unchanged over time. Furthermore, the proposed solutions are tailored for vision tasks solely. To overcome these limitations, we propose a new modality-agnostic approach to deal with the online scenario where new data arrive in streams of mini-batches that can only be processed once. To solve catastrophic forgetting, we propose an uncertainty-aware memory-based approach. In particular, we suggest using an estimator based on the Bregman Information (BI) to compute the model's variance at the sample level. Through measures of predictive uncertainty, we retrieve samples with specific characteristics, and - by retraining the model on such samples - we demonstrate the potential of this approach to reduce the forgetting effect in realistic settings.
Abstract:Poor generalization performance caused by distribution shifts in unseen domains often hinders the trustworthy deployment of deep neural networks. Many domain generalization techniques address this problem by adding a domain invariant regularization loss terms during training. However, there is a lack of modular software that allows users to combine the advantages of different methods with minimal effort for reproducibility. DomainLab is a modular Python package for training user specified neural networks with composable regularization loss terms. Its decoupled design allows the separation of neural networks from regularization loss construction. Hierarchical combinations of neural networks, different domain generalization methods, and associated hyperparameters, can all be specified together with other experimental setup in a single configuration file. Hierarchical combinations of neural networks, different domain generalization methods, and associated hyperparameters, can all be specified together with other experimental setup in a single configuration file. In addition, DomainLab offers powerful benchmarking functionality to evaluate the generalization performance of neural networks in out-of-distribution data. The package supports running the specified benchmark on an HPC cluster or on a standalone machine. The package is well tested with over 95 percent coverage and well documented. From the user perspective, it is closed to modification but open to extension. The package is under the MIT license, and its source code, tutorial and documentation can be found at https://github.com/marrlab/DomainLab.