Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

The good, the bad and the ugly sides of data augmentation: An implicit spectral regularization perspective


Oct 10, 2022
Chi-Heng Lin, Chiraag Kaushik, Eva L. Dyer, Vidya Muthukumar

* 75 pages, 9 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Learning Behavior Representations Through Multi-Timescale Bootstrapping


Jun 14, 2022
Mehdi Azabou, Michael Mendelson, Maks Sorokin, Shantanu Thakoor, Nauman Ahad, Carolina Urzay, Eva L. Dyer


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Seeing the forest and the tree: Building representations of both individual and collective dynamics with transformers


Jun 10, 2022
Ran Liu, Mehdi Azabou, Max Dabagia, Jingyun Xiao, Eva L. Dyer


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Learning Sinkhorn divergences for supervised change point detection


Feb 10, 2022
Nauman Ahad, Eva L. Dyer, Keith B. Hengen, Yao Xie, Mark A. Davenport

* 19 pages, 13 figures. Reorganized figures and text for improved readability 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Drop, Swap, and Generate: A Self-Supervised Approach for Generating Neural Activity


Nov 03, 2021
Ran Liu, Mehdi Azabou, Max Dabagia, Chi-Heng Lin, Mohammad Gheshlaghi Azar, Keith B. Hengen, Michal Valko, Eva L. Dyer

* To be published in Neurips 2021 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Neural Latents Benchmark '21: Evaluating latent variable models of neural population activity


Sep 10, 2021
Felix Pei, Joel Ye, David Zoltowski, Anqi Wu, Raeed H. Chowdhury, Hansem Sohn, Joseph E. O'Doherty, Krishna V. Shenoy, Matthew T. Kaufman, Mark Churchland, Mehrdad Jazayeri, Lee E. Miller, Jonathan Pillow, Il Memming Park, Eva L. Dyer, Chethan Pandarinath

* Corrected missing line in Figure 3 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Mine Your Own vieW: Self-Supervised Learning Through Across-Sample Prediction


Feb 19, 2021
Mehdi Azabou, Mohammad Gheshlaghi Azar, Ran Liu, Chi-Heng Lin, Erik C. Johnson, Kiran Bhaskaran-Nair, Max Dabagia, Keith B. Hengen, William Gray-Roncal, Michal Valko, Eva L. Dyer


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Making transport more robust and interpretable by moving data through a small number of anchor points


Dec 21, 2020
Chi-Heng Lin, Mehdi Azabou, Eva L. Dyer


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Bayesian optimization for modular black-box systems with switching costs


Jun 04, 2020
Chi-Heng Lin, Joseph D. Miano, Eva L. Dyer


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Hierarchical Optimal Transport for Multimodal Distribution Alignment


Jun 27, 2019
John Lee, Max Dabagia, Eva L. Dyer, Christopher J. Rozell


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email
1
2
>>