The increasing applications of autonomous driving systems necessitates large-scale, high-quality datasets to ensure robust performance across diverse scenarios. Synthetic data has emerged as a viable solution to augment real-world datasets due to its cost-effectiveness, availability of precise ground-truth labels, and the ability to model specific edge cases. However, synthetic data may introduce distributional differences and biases that could impact model performance in real-world settings. To evaluate the utility and limitations of synthetic data, we conducted controlled experiments using multiple real-world datasets and a synthetic dataset generated by BIT Technology Solutions GmbH. Our study spans two sensor modalities, camera and LiDAR, and investigates both 2D and 3D object detection tasks. We compare models trained on real, synthetic, and mixed datasets, analyzing their robustness and generalization capabilities. Our findings demonstrate that the use of a combination of real and synthetic data improves the robustness and generalization of object detection models, underscoring the potential of synthetic data in advancing autonomous driving technologies.