Space Center, Skolkovo Institute of Science and Technology
Abstract:This paper presents the concept of Industry 6.0, introducing the world's first fully automated production system that autonomously handles the entire product design and manufacturing process based on user-provided natural language descriptions. By leveraging generative AI, the system automates critical aspects of production, including product blueprint design, component manufacturing, logistics, and assembly. A heterogeneous swarm of robots, each equipped with individual AI through integration with Large Language Models (LLMs), orchestrates the production process. The robotic system includes manipulator arms, delivery drones, and 3D printers capable of generating assembly blueprints. The system was evaluated using commercial and open-source LLMs, functioning through APIs and local deployment. A user study demonstrated that the system reduces the average production time to 119.10 minutes, significantly outperforming a team of expert human developers, who averaged 528.64 minutes (an improvement factor of 4.4). Furthermore, in the product blueprinting stage, the system surpassed human CAD operators by an unprecedented factor of 47, completing the task in 0.5 minutes compared to 23.5 minutes. This breakthrough represents a major leap towards fully autonomous manufacturing.
Abstract:This paper addresses the challenges of exploration and navigation in unknown environments from the perspective of evolutionary swarm robotics. A key focus is on path formation, which is essential for enabling cooperative swarm robots to navigate effectively. We designed the task allocation and path formation process based on a finite state machine, ensuring systematic decision-making and efficient state transitions. The approach is decentralized, allowing each robot to make decisions independently based on local information, which enhances scalability and robustness. We present a novel subgoal-based path formation method that establishes paths between locations by leveraging visually connected subgoals. Simulation experiments conducted in the Argos simulator show that this method successfully forms paths in the majority of trials. However, inter-collision (traffic) among numerous robots during path formation can negatively impact performance. To address this issue, we propose a task allocation strategy that uses local communication protocols and light signal-based communication to manage robot deployment. This strategy assesses the distance between points and determines the optimal number of robots needed for the path formation task, thereby reducing unnecessary exploration and traffic congestion. The performance of both the subgoal-based path formation method and the task allocation strategy is evaluated by comparing the path length, time, and resource usage against the A* algorithm. Simulation results demonstrate the effectiveness of our approach, highlighting its scalability, robustness, and fault tolerance.
Abstract:This paper introduces a system of data collection acceleration and real-to-sim transferring for surface recognition on a quadruped robot. The system features a mechanical single-leg setup capable of stepping on various easily interchangeable surfaces. Additionally, it incorporates a GRU-based Surface Recognition System, inspired by the system detailed in the Dog-Surf paper. This setup facilitates the expansion of dataset collection for model training, enabling data acquisition from hard-to-reach surfaces in laboratory conditions. Furthermore, it opens avenues for transferring surface properties from reality to simulation, thereby allowing the training of optimal gaits for legged robots in simulation environments using a pre-prepared library of digital twins of surfaces. Moreover, enhancements have been made to the GRU-based Surface Recognition System, allowing for the integration of data from both the quadruped robot and the single-leg setup. The dataset and code have been made publicly available.
Abstract:This paper presents the OmniRace approach to controlling a racing drone with 6-degree of freedom (DoF) hand pose estimation and gesture recognition. To our knowledge, it is the first-ever technology that allows for low-level control of high-speed drones using gestures. OmniRace employs a gesture interface based on computer vision and a deep neural network to estimate a 6-DoF hand pose. The advanced machine learning algorithm robustly interprets human gestures, allowing users to control drone motion intuitively. Real-time control of a racing drone demonstrates the effectiveness of the system, validating its potential to revolutionize drone racing and other applications. Experimental results conducted in the Gazebo simulation environment revealed that OmniRace allows the users to complite the UAV race track significantly (by 25.1%) faster and to decrease the length of the test drone path (from 102.9 to 83.7 m). Users preferred the gesture interface for attractiveness (1.57 UEQ score), hedonic quality (1.56 UEQ score), and lower perceived temporal demand (32.0 score in NASA-TLX), while noting the high efficiency (0.75 UEQ score) and low physical demand (19.0 score in NASA-TLX) of the baseline remote controller. The deep neural network attains an average accuracy of 99.75% when applied to both normalized datasets and raw datasets. OmniRace can potentially change the way humans interact with and navigate racing drones in dynamic and complex environments. The source code is available at https://github.com/SerValera/OmniRace.git.
Abstract:In the rapidly evolving landscape of digital content creation, the demand for fast, convenient, and autonomous methods of crafting detailed 3D reconstructions of humans has grown significantly. Addressing this pressing need, our AirNeRF system presents an innovative pathway to the creation of a realistic 3D human avatar. Our approach leverages Neural Radiance Fields (NeRF) with an automated drone-based video capturing method. The acquired data provides a swift and precise way to create high-quality human body reconstructions following several stages of our system. The rigged mesh derived from our system proves to be an excellent foundation for free-view synthesis of dynamic humans, particularly well-suited for the immersive experiences within gaming and virtual reality.
Abstract:This paper introduces the GazeRace method for drone navigation, employing a computer vision interface facilitated by eye-tracking technology. This interface is designed to be compatible with a single camera and uses a convolutional neural network to convert eye movements into control commands for the drone. Experimental validation demonstrates that users equipped with the eye-tracking interface achieve comparable performance to a traditional remote control interface when completing a drone racing task. Ten participants completed flight tests in which they navigated a drone through a racing track in a Gazebo simulation environment. Users reduced drone trajectory length by 18% (73.44 m vs. 89.29 m) using the eye-tracking interface to navigate racing gates effectively. The time taken to complete the route using the eye-tracking method (average of 70.01 seconds) was only 3.5% slower than using the remote control method (also average of 70.01 seconds), indicating the good efficiency of the interface. It is also worth mentioning that four of the participants completed the race with an average time that was 25.9% faster than the other participants. In addition, users evaluated highly the performance (M = 34.0, SD = 14.2) and low frustration (M = 30.5, SD = 9.2) with the eye-tracking interface compared to performance (M = 63.0, SD = 10.1) and frustration (M = 49.0, SD = 11.7) with the baseline remote controller. The hedonic quality (M = 1.65, SD = 0.45) was also evaluated high by the users in the UEQ questionnaire.
Abstract:This paper discusses developments for a multi-limb morphogenetic UAV, MorphoGear, that is capable of both aerial flight and ground locomotion. A hybrid path planning algorithm based on A* strategy has been developed enabling seamless transition between air-to-ground navigation modes, thereby enhancing robot's mobility in complex environments. Moreover, precise path following is achieved during ground locomotion with a Model Predictive Control (MPC) architecture for its novel walking behaviour. Experimental validation was conducted in the Unity simulation environment utilizing Python scripts to compute control values. The algorithms' performance is validated by the Root Mean Squared Error (RMSE) of 0.91 cm and a maximum error of 1.85 cm, as demonstrated by the results. These developments highlight the adaptability of MorphoGear in navigation through cluttered environments, establishing it as a usable tool in autonomous exploration, both aerial and ground-based.
Abstract:Autonomous drone navigation faces a critical challenge in achieving accurate landings on dynamic platforms, especially under unpredictable conditions such as wind turbulence. Our research introduces TornadoDrone, a novel Deep Reinforcement Learning (DRL) model that adopts bio-inspired mechanisms to adapt to wind forces, mirroring the natural adaptability seen in birds. This model, unlike traditional approaches, derives its adaptability from indirect cues such as changes in position and velocity, rather than direct wind force measurements. TornadoDrone was rigorously trained in the gym-pybullet-drone simulator, which closely replicates the complexities of wind dynamics in the real world. Through extensive testing with Crazyflie 2.1 drones in both simulated and real windy conditions, TornadoDrone demonstrated a high performance in maintaining high-precision landing accuracy on moving platforms, surpassing conventional control methods such as PID controllers with Extended Kalman Filters. The study not only highlights the potential of DRL to tackle complex aerodynamic challenges but also paves the way for advanced autonomous systems that can adapt to environmental changes in real-time. The success of TornadoDrone signifies a leap forward in drone technology, particularly for critical applications such as surveillance and emergency response, where reliability and precision are paramount.
Abstract:Achieving safe and precise landings for a swarm of drones poses a significant challenge, primarily attributed to conventional control and planning methods. This paper presents the implementation of multi-agent deep reinforcement learning (MADRL) techniques for the precise landing of a drone swarm at relocated target locations. The system is trained in a realistic simulated environment with a maximum velocity of 3 m/s in training spaces of 4 x 4 x 4 m and deployed utilizing Crazyflie drones with a Vicon indoor localization system. The experimental results revealed that the proposed approach achieved a landing accuracy of 2.26 cm on stationary and 3.93 cm on moving platforms surpassing a baseline method used with a Proportional-integral-derivative (PID) controller with an Artificial Potential Field (APF). This research highlights drone landing technologies that eliminate the need for analytical centralized systems, potentially offering scalability and revolutionizing applications in logistics, safety, and rescue missions.
Abstract:Camera, LiDAR and radar are common perception sensors for autonomous driving tasks. Robust prediction of 3D object detection is optimally based on the fusion of these sensors. To exploit their abilities wisely remains a challenge because each of these sensors has its own characteristics. In this paper, we propose FADet, a multi-sensor 3D detection network, which specifically studies the characteristics of different sensors based on our local featured attention modules. For camera images, we propose dual-attention-based sub-module. For LiDAR point clouds, triple-attention-based sub-module is utilized while mixed-attention-based sub-module is applied for features of radar points. With local featured attention sub-modules, our FADet has effective detection results in long-tail and complex scenes from camera, LiDAR and radar input. On NuScenes validation dataset, FADet achieves state-of-the-art performance on LiDAR-camera object detection tasks with 71.8% NDS and 69.0% mAP, at the same time, on radar-camera object detection tasks with 51.7% NDS and 40.3% mAP. Code will be released at https://github.com/ZionGo6/FADet.