Abstract:Agile Earth Observation Satellites (AEOSs) constellations offer unprecedented flexibility for monitoring the Earth's surface, but their scheduling remains challenging under large-scale scenarios, dynamic environments, and stringent constraints. Existing methods often simplify these complexities, limiting their real-world performance. We address this gap with a unified framework integrating a standardized benchmark suite and a novel scheduling model. Our benchmark suite, AEOS-Bench, contains $3,907$ finely tuned satellite assets and $16,410$ scenarios. Each scenario features $1$ to $50$ satellites and $50$ to $300$ imaging tasks. These scenarios are generated via a high-fidelity simulation platform, ensuring realistic satellite behavior such as orbital dynamics and resource constraints. Ground truth scheduling annotations are provided for each scenario. To our knowledge, AEOS-Bench is the first large-scale benchmark suite tailored for realistic constellation scheduling. Building upon this benchmark, we introduce AEOS-Former, a Transformer-based scheduling model that incorporates a constraint-aware attention mechanism. A dedicated internal constraint module explicitly models the physical and operational limits of each satellite. Through simulation-based iterative learning, AEOS-Former adapts to diverse scenarios, offering a robust solution for AEOS constellation scheduling. Experimental results demonstrate that AEOS-Former outperforms baseline models in task completion and energy efficiency, with ablation studies highlighting the contribution of each component. Code and data are provided in https://github.com/buaa-colalab/AEOSBench.
Abstract:Diagnosing rare diseases presents a common challenge in clinical practice, necessitating the expertise of specialists for accurate identification. The advent of machine learning offers a promising solution, while the development of such technologies is hindered by the scarcity of data on rare conditions and the demand for models that are both interpretable and trustworthy in a clinical context. Interpretable AI, with its capacity for human-readable outputs, can facilitate validation by clinicians and contribute to medical education. In the current work, we focus on choroid neoplasias, the most prevalent form of eye cancer in adults, albeit rare with 5.1 per million. We built the so-far largest dataset consisting of 750 patients, incorporating three distinct imaging modalities collected from 2004 to 2022. Our work introduces a concept-based interpretable model that distinguishes between three types of choroidal tumors, integrating insights from domain experts via radiological reports. Remarkably, this model not only achieves an F1 score of 0.91, rivaling that of black-box models, but also boosts the diagnostic accuracy of junior doctors by 42%. This study highlights the significant potential of interpretable machine learning in improving the diagnosis of rare diseases, laying a groundwork for future breakthroughs in medical AI that could tackle a wider array of complex health scenarios.