Abstract:Negotiation is a core component of social intelligence, requiring agents to balance strategic reasoning, cooperation, and social norms. Recent work shows that LLMs can engage in multi-turn negotiation, yet nearly all evaluations occur exclusively in English. Using controlled multi-agent simulations across Ultimatum, Buy-Sell, and Resource Exchange games, we systematically isolate language effects across English and four Indic framings (Hindi, Punjabi, Gujarati, Marwadi) by holding game rules, model parameters, and incentives constant across all conditions. We find that language choice can shift outcomes more strongly than changing models, reversing proposer advantages and reallocating surplus. Crucially, effects are task-contingent: Indic languages reduce stability in distributive games yet induce richer exploration in integrative settings. Our results demonstrate that evaluating LLM negotiation solely in English yields incomplete and potentially misleading conclusions. These findings caution against English-only evaluation of LLMs and suggest that culturally-aware evaluation is essential for fair deployment.
Abstract:Cricket is the second most popular sport globally, commanding a massive following of over 2.5 billion fans globally. Enthusiasts and analysts frequently seek advanced statistical insights, such as long-term historical performance trends or complex player comparisons, that are often unavailable through standard web searches. While Large Language Models (LLMs) have advanced significantly in Text-to-SQL tasks, their capability to handle the domain-specific nuances, complex schema variations, and multilingual requirements inherent to sports analytics remains under-explored. To investigate this potential capability gap, we present CricBench, a comprehensive benchmark suite for evaluating LLMs on specialized cricket data. To curate a "Gold Standard" dataset, we collaborate with domain experts in cricket and SQL to manually author complex queries, ensuring logical correctness. Recognizing linguistic diversity, we construct the benchmark in both English and Hindi, establishing a framework that is open for further extension to other regional languages. We evaluate six state-of-the-art models, including GPT-4o, Claude 3.7 Sonnet, and open-source models, using a strict evaluation protocol. Our results reveal that high performance on general benchmarks does not guarantee success in specialized domains. While the open-weights reasoning model DeepSeek R1 achieves state-of-the-art performance (50.6%), surpassing proprietary giants like Claude 3.7 Sonnet (47.7%) and GPT-4o (33.7%), it still exhibits a significant accuracy drop when moving from general benchmarks (BIRD) to CricBench. Furthermore, we observe that code-mixed Hindi queries frequently yield parity or higher accuracy compared to English, challenging the assumption that English is the optimal prompt language for specialized SQL tasks.
Abstract:Large Language Models (LLMs) have demonstrated significant potential in automated software security, particularly in vulnerability detection. However, existing benchmarks primarily focus on isolated, single-vulnerability samples or function-level classification, failing to reflect the complexity of real-world software where multiple interacting vulnerabilities often coexist within large files. Recent studies indicate that LLMs suffer from "count bias" and "selection bias" in multi-label tasks, yet this has not been rigorously quantified in the domain of code security. In this work, we introduce a comprehensive benchmark for Multi-Vulnerability Detection across four major languages: C, C++, Python, and JavaScript. We construct a dataset of 40,000 files by systematically injecting controlled counts of vulnerabilities (1, 3, 5, and 9) into long-context code samples (7.5k-10k tokens) sourced from CodeParrot. We evaluate five state-of-the-art LLMs, including GPT-4o-mini, Llama-3.3-70B, and the Qwen-2.5 series. Our results reveal a sharp degradation in performance as vulnerability density increases. While Llama-3.3-70B achieves near-perfect F1 scores (approximately 0.97) on single-vulnerability C tasks, performance drops by up to 40% in high-density settings. Notably, Python and JavaScript show distinct failure modes compared to C/C++, with models exhibiting severe "under-counting" (Recall dropping to less than 0.30) in complex Python files.
Abstract:Intelligent image editing increasingly relies on advances in computer vision, multimodal reasoning, and generative modeling. While vision-language models (VLMs) and diffusion models enable guided visual manipulation, existing work rarely ensures that inserted objects are \emph{contextually appropriate}. We introduce two new tasks for advertising and digital media: (1) \emph{context-aware object insertion}, which requires predicting suitable object categories, generating them, and placing them plausibly within the scene; and (2) \emph{sponsor-product logo augmentation}, which involves detecting products and inserting correct brand logos, even when items are unbranded or incorrectly branded. To support these tasks, we build two new datasets with category annotations, placement regions, and sponsor-product labels.
Abstract:Evaluating short-form video content requires moving beyond surface-level quality metrics toward human-aligned, multimodal reasoning. While existing frameworks like VideoScore-2 assess visual and semantic fidelity, they do not capture how specific audiovisual attributes drive real audience engagement. In this work, we propose a data-driven evaluation framework that uses Vision-Language Models (VLMs) to extract unsupervised audiovisual features, clusters them into interpretable factors, and trains a regression-based evaluator to predict engagement on short-form edutainment videos. Our curated YouTube Shorts dataset enables systematic analysis of how VLM-derived features relate to human engagement behavior. Experiments show strong correlations between predicted and actual engagement, demonstrating that our lightweight, feature-based evaluator provides interpretable and scalable assessments compared to traditional metrics (e.g., SSIM, FID). By grounding evaluation in both multimodal feature importance and human-centered engagement signals, our approach advances toward robust and explainable video understanding.




Abstract:Automatic Speech Recognition (ASR) holds immense potential to assist in clinical documentation and patient report generation, particularly in resource-constrained regions. However, deployment is currently hindered by a technical deadlock: a severe "Reality Gap" between laboratory performance and noisy, real-world clinical audio, coupled with strict privacy and resource constraints. We quantify this gap, showing that a robust multilingual model (IndicWav2Vec) degrades to a 40.94% WER on rural clinical data from India, rendering it unusable. To address this, we explore a zero-data-exfiltration framework enabling localized, continual adaptation via Low-Rank Adaptation (LoRA). We conduct a rigorous investigative study of continual learning strategies, characterizing the trade-offs between data-driven and parameter-driven stability. Our results demonstrate that multi-domain Experience Replay (ER) yields the primary performance gains, achieving a 17.1% relative improvement in target WER and reducing catastrophic forgetting by 55% compared to naive adaptation. Furthermore, we observed that standard Elastic Weight Consolidation (EWC) faced numerical stability challenges when applied to LoRA in noisy environments. Our experiments show that a stabilized, linearized formulation effectively controls gradient magnitudes and enables stable convergence. Finally, we verify via a domain-specific spot check that acoustic adaptation is a fundamental prerequisite for usability which cannot be bypassed by language models alone.




Abstract:Prompt injection and jailbreaking attacks pose persistent security challenges to large language model (LLM)-based systems. We present an efficient and systematically evaluated defense architecture that mitigates these threats through a lightweight, multi-stage pipeline. Its core component is a semantic filter based on text normalization, TF-IDF representations, and a Linear SVM classifier. Despite its simplicity, this module achieves 93.4% accuracy and 96.5% specificity on held-out data, substantially reducing attack throughput while incurring negligible computational overhead. Building on this efficient foundation, the full pipeline integrates complementary detection and mitigation mechanisms that operate at successive stages, providing strong robustness with minimal latency. In comparative experiments, our SVM-based configuration improves overall accuracy from 35.1% to 93.4% while reducing average time to completion from approximately 450s to 47s, yielding over 10 times lower latency than ShieldGemma. These results demonstrate that the proposed design simultaneously advances defensive precision and efficiency, addressing a core limitation of current model-based moderators. Evaluation across a curated corpus of over 30,000 labeled prompts, including benign, jailbreak, and application-layer injections, confirms that staged, resource-efficient defenses can robustly secure modern LLM-driven applications.
Abstract:Vision-Language Models have demonstrated remarkable capabilities in understanding visual content, yet systematic biases in their spatial processing remain largely unexplored. This work identifies and characterizes a systematic spatial attention bias where VLMs consistently prioritize describing left-positioned content before right-positioned content in horizontally concatenated images. Through controlled experiments on image pairs using both open-source and closed-source models, we demonstrate that this bias persists across different architectures, with models describing left-positioned content first in approximately 97% of cases under neutral prompting conditions. Testing on an Arabic-finetuned model reveals that the bias persists despite right-to-left language training, ruling out language reading direction as the primary cause. Investigation of training dataset annotation guidelines from PixMo and Visual Genome reveals no explicit left-first ordering instructions, suggesting the bias is consistent with architectural factors rather than explicit training data instructions. These findings reveal fundamental limitations in how current VLMs process spatial information.
Abstract:Strategic decision-making in Pokémon battles presents a unique testbed for evaluating large language models. Pokémon battles demand reasoning about type matchups, statistical trade-offs, and risk assessment, skills that mirror human strategic thinking. This work examines whether Large Language Models (LLMs) can serve as competent battle agents, capable of both making tactically sound decisions and generating novel, balanced game content. We developed a turn-based Pokémon battle system where LLMs select moves based on battle state rather than pre-programmed logic. The framework captures essential Pokémon mechanics: type effectiveness multipliers, stat-based damage calculations, and multi-Pokémon team management. Through systematic evaluation across multiple model architectures we measured win rates, decision latency, type-alignment accuracy, and token efficiency. These results suggest LLMs can function as dynamic game opponents without domain-specific training, offering a practical alternative to reinforcement learning for turn-based strategic games. The dual capability of tactical reasoning and content creation, positions LLMs as both players and designers, with implications for procedural generation and adaptive difficulty systems in interactive entertainment.
Abstract:Retrieval-Augmented Generation (RAG) grounds large language models (LLMs) in external evidence, but fails when retrieved sources conflict or contain outdated or subjective information. Prior work address these issues independently but lack unified reasoning supervision. We propose a reasoning-trace-augmented RAG framework that adds structured, interpretable reasoning across three stages : (1) document-level adjudication, (2) conflict analysis, and (3) grounded synthesis, producing citation-linked answers or justified refusals. A Conflict-Aware Trust-Score (CATS) pipeline is introduced which evaluates groundedness, factual correctness, refusal accuracy, and conflict-behavior alignment using an LLM-as-a-Judge. Our 539-query reasoning dataset and evaluation pipeline establish a foundation for conflict-aware, interpretable RAG systems. Experimental results demonstrate substantial gains over baselines, most notably with Qwen, where Supervised Fine-Tuning improved End-to-End answer correctness from 0.069 to 0.883 and behavioral adherence from 0.074 to 0.722.