Abstract:A world model enables an intelligent agent to imagine, predict, and reason about how the world evolves in response to its actions, and accordingly to plan and strategize. While recent video generation models produce realistic visual sequences, they typically operate in the prompt-to-full-video manner without causal control, interactivity, or long-horizon consistency required for purposeful reasoning. Existing world modeling efforts, on the other hand, often focus on restricted domains (e.g., physical, game, or 3D-scene dynamics) with limited depth and controllability, and struggle to generalize across diverse environments and interaction formats. In this work, we introduce PAN, a general, interactable, and long-horizon world model that predicts future world states through high-quality video simulation conditioned on history and natural language actions. PAN employs the Generative Latent Prediction (GLP) architecture that combines an autoregressive latent dynamics backbone based on a large language model (LLM), which grounds simulation in extensive text-based knowledge and enables conditioning on language-specified actions, with a video diffusion decoder that reconstructs perceptually detailed and temporally coherent visual observations, to achieve a unification between latent space reasoning (imagination) and realizable world dynamics (reality). Trained on large-scale video-action pairs spanning diverse domains, PAN supports open-domain, action-conditioned simulation with coherent, long-term dynamics. Extensive experiments show that PAN achieves strong performance in action-conditioned world simulation, long-horizon forecasting, and simulative reasoning compared to other video generators and world models, taking a step towards general world models that enable predictive simulation of future world states for reasoning and acting.
Abstract:Contemporary deep learning models have achieved impressive performance in image classification by primarily leveraging statistical regularities within large datasets, but they rarely incorporate structured insights drawn directly from perceptual psychology. To explore the potential of perceptually motivated inductive biases, we propose integrating classic geometric visual illusions well-studied phenomena from human perception into standard image-classification training pipelines. Specifically, we introduce a synthetic, parametric geometric-illusion dataset and evaluate three multi-source learning strategies that combine illusion recognition tasks with ImageNet classification objectives. Our experiments reveal two key conceptual insights: (i) incorporating geometric illusions as auxiliary supervision systematically improves generalization, especially in visually challenging cases involving intricate contours and fine textures; and (ii) perceptually driven inductive biases, even when derived from synthetic stimuli traditionally considered unrelated to natural image recognition, can enhance the structural sensitivity of both CNN and transformer-based architectures. These results demonstrate a novel integration of perceptual science and machine learning and suggest new directions for embedding perceptual priors into vision model design.




Abstract:The impact of social media on critical issues such as echo chambers needs to be addressed, as these phenomena can have disruptive consequences for our society. Traditional research often oversimplifies emotional tendencies and opinion evolution into numbers and formulas, neglecting that news and communication are conveyed through text, which limits these approaches. Hence, in this work, we propose an LLM-based simulation for the social opinion network to evaluate and counter polarization phenomena. We first construct three typical network structures to simulate different characteristics of social interactions. Then, agents interact based on recommendation algorithms and update their strategies through reasoning and analysis. By comparing these interactions with the classic Bounded Confidence Model (BCM), the Friedkin Johnsen (FJ) model, and using echo chamber-related indices, we demonstrate the effectiveness of our framework in simulating opinion dynamics and reproducing phenomena such as opinion polarization and echo chambers. We propose two mitigation methods, active and passive nudges, that can help reduce echo chambers, specifically within language-based simulations. We hope our work will offer valuable insights and guidance for social polarization mitigation.