Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

We study the problem of online unweighted bipartite matching with $n$ offline vertices and $n$ online vertices where one wishes to be competitive against the optimal offline algorithm. While the classic RANKING algorithm of Karp et al. [1990] provably attains competitive ratio of $1-1/e > 1/2$, we show that no learning-augmented method can be both 1-consistent and strictly better than $1/2$-robust under the adversarial arrival model. Meanwhile, under the random arrival model, we show how one can utilize methods from distribution testing to design an algorithm that takes in external advice about the online vertices and provably achieves competitive ratio interpolating between any ratio attainable by advice-free methods and the optimal ratio of 1, depending on the advice quality.

Via

Causal graph discovery is a significant problem with applications across various disciplines. However, with observational data alone, the underlying causal graph can only be recovered up to its Markov equivalence class, and further assumptions or interventions are necessary to narrow down the true graph. This work addresses the causal discovery problem under the setting of stochastic interventions with the natural goal of minimizing the number of interventions performed. We propose the following stochastic intervention model which subsumes existing adaptive noiseless interventions in the literature while capturing scenarios such as fat-hand interventions and CRISPR gene knockouts: any intervention attempt results in an actual intervention on a random subset of vertices, drawn from a distribution dependent on attempted action. Under this model, we study the two fundamental problems in causal discovery of verification and search and provide approximation algorithms with polylogarithmic competitive ratios and provide some preliminary experimental results.

Via

We establish finite-sample guarantees for efficient proper learning of bounded-degree polytrees, a rich class of high-dimensional probability distributions and a subclass of Bayesian networks, a widely-studied type of graphical model. Recently, Bhattacharyya et al. (2021) obtained finite-sample guarantees for recovering tree-structured Bayesian networks, i.e., 1-polytrees. We extend their results by providing an efficient algorithm which learns $d$-polytrees in polynomial time and sample complexity for any bounded $d$ when the underlying undirected graph (skeleton) is known. We complement our algorithm with an information-theoretic sample complexity lower bound, showing that the dependence on the dimension and target accuracy parameters are nearly tight.

Via

Causal discovery from interventional data is an important problem, where the task is to design an interventional strategy that learns the hidden ground truth causal graph $G(V,E)$ on $|V| = n$ nodes while minimizing the number of performed interventions. Most prior interventional strategies broadly fall into two categories: non-adaptive and adaptive. Non-adaptive strategies decide on a single fixed set of interventions to be performed while adaptive strategies can decide on which nodes to intervene on sequentially based on past interventions. While adaptive algorithms may use exponentially fewer interventions than their non-adaptive counterparts, there are practical concerns that constrain the amount of adaptivity allowed. Motivated by this trade-off, we study the problem of $r$-adaptivity, where the algorithm designer recovers the causal graph under a total of $r$ sequential rounds whilst trying to minimize the total number of interventions. For this problem, we provide a $r$-adaptive algorithm that achieves $O(\min\{r,\log n\} \cdot n^{1/\min\{r,\log n\}})$ approximation with respect to the verification number, a well-known lower bound for adaptive algorithms. Furthermore, for every $r$, we show that our approximation is tight. Our definition of $r$-adaptivity interpolates nicely between the non-adaptive ($r=1$) and fully adaptive ($r=n$) settings where our approximation simplifies to $O(n)$ and $O(\log n)$ respectively, matching the best-known approximation guarantees for both extremes. Our results also extend naturally to the bounded size interventions.

Via

We introduce the problem of active causal structure learning with advice. In the typical well-studied setting, the learning algorithm is given the essential graph for the observational distribution and is asked to recover the underlying causal directed acyclic graph (DAG) $G^*$ while minimizing the number of interventions made. In our setting, we are additionally given side information about $G^*$ as advice, e.g. a DAG $G$ purported to be $G^*$. We ask whether the learning algorithm can benefit from the advice when it is close to being correct, while still having worst-case guarantees even when the advice is arbitrarily bad. Our work is in the same space as the growing body of research on algorithms with predictions. When the advice is a DAG $G$, we design an adaptive search algorithm to recover $G^*$ whose intervention cost is at most $O(\max\{1, \log \psi\})$ times the cost for verifying $G^*$; here, $\psi$ is a distance measure between $G$ and $G^*$ that is upper bounded by the number of variables $n$, and is exactly 0 when $G=G^*$. Our approximation factor matches the state-of-the-art for the advice-less setting.

Via

Recovering causal relationships from data is an important problem. Using observational data, one can typically only recover causal graphs up to a Markov equivalence class and additional assumptions or interventional data are needed for complete recovery. In this work, under some standard assumptions, we study causal graph discovery via adaptive interventions with node-dependent interventional costs. For this setting, we show that no algorithm can achieve an approximation guarantee that is asymptotically better than linear in the number of vertices with respect to the verification number; a well-established benchmark for adaptive search algorithms. Motivated by this negative result, we define a new benchmark that captures the worst-case interventional cost for any search algorithm. Furthermore, with respect to this new benchmark, we provide adaptive search algorithms that achieve logarithmic approximations under various settings: atomic, bounded size interventions and generalized cost objectives.

Via

Learning causal relationships between variables is a fundamental task in causal inference and directed acyclic graphs (DAGs) are a popular choice to represent the causal relationships. As one can recover a causal graph only up to its Markov equivalence class from observations, interventions are often used for the recovery task. Interventions are costly in general and it is important to design algorithms that minimize the number of interventions performed. In this work, we study the problem of learning the causal relationships of a subset of edges (target edges) in a graph with as few interventions as possible. Under the assumptions of faithfulness, causal sufficiency, and ideal interventions, we study this problem in two settings: when the underlying ground truth causal graph is known (subset verification) and when it is unknown (subset search). For the subset verification problem, we provide an efficient algorithm to compute a minimum sized interventional set; we further extend these results to bounded size non-atomic interventions and node-dependent interventional costs. For the subset search problem, in the worst case, we show that no algorithm (even with adaptivity or randomization) can achieve an approximation ratio that is asymptotically better than the vertex cover of the target edges when compared with the subset verification number. This result is surprising as there exists a logarithmic approximation algorithm for the search problem when we wish to recover the whole causal graph. To obtain our results, we prove several interesting structural properties of interventional causal graphs that we believe have applications beyond the subset verification/search problems studied here.

Via

We provide time- and sample-efficient algorithms for learning and testing latent-tree Ising models, i.e. Ising models that may only be observed at their leaf nodes. On the learning side, we obtain efficient algorithms for learning a tree-structured Ising model whose leaf node distribution is close in Total Variation Distance, improving on the results of prior work. On the testing side, we provide an efficient algorithm with fewer samples for testing whether two latent-tree Ising models have leaf-node distributions that are close or far in Total Variation distance. We obtain our algorithms by showing novel localization results for the total variation distance between the leaf-node distributions of tree-structured Ising models, in terms of their marginals on pairs of leaves.

Via

We study two problems related to recovering causal graphs from interventional data: (i) $\textit{verification}$, where the task is to check if a purported causal graph is correct, and (ii) $\textit{search}$, where the task is to recover the correct causal graph. For both, we wish to minimize the number of interventions performed. For the first problem, we give a characterization of a minimal sized set of atomic interventions that is necessary and sufficient to check the correctness of a claimed causal graph. Our characterization uses the notion of $\textit{covered edges}$, which enables us to obtain simple proofs and also easily reason about earlier results. We also generalize our results to the settings of bounded size interventions and node-dependent interventional costs. For all the above settings, we provide the first known provable algorithms for efficiently computing (near)-optimal verifying sets on general graphs. For the second problem, we give a simple adaptive algorithm based on graph separators that produces an atomic intervention set which fully orients any essential graph while using $\mathcal{O}(\log n)$ times the optimal number of interventions needed to $\textit{verify}$ (verifying size) the underlying DAG on $n$ vertices. This approximation is tight as $\textit{any}$ search algorithm on an essential line graph has worst case approximation ratio of $\Omega(\log n)$ with respect to the verifying size. With bounded size interventions, each of size $\leq k$, our algorithm gives an $\mathcal{O}(\log n \cdot \log \log k)$ factor approximation. Our result is the first known algorithm that gives a non-trivial approximation guarantee to the verifying size on general unweighted graphs and with bounded size interventions.

Via

Gaussian Bayesian networks (a.k.a. linear Gaussian structural equation models) are widely used to model causal interactions among continuous variables. In this work, we study the problem of learning a fixed-structure Gaussian Bayesian network up to a bounded error in total variation distance. We analyze the commonly used node-wise least squares regression (LeastSquares) and prove that it has a near-optimal sample complexity. We also study a couple of new algorithms for the problem: - BatchAvgLeastSquares takes the average of several batches of least squares solutions at each node, so that one can interpolate between the batch size and the number of batches. We show that BatchAvgLeastSquares also has near-optimal sample complexity. - CauchyEst takes the median of solutions to several batches of linear systems at each node. We show that the algorithm specialized to polytrees, CauchyEstTree, has near-optimal sample complexity. Experimentally, we show that for uncontaminated, realizable data, the LeastSquares algorithm performs best, but in the presence of contamination or DAG misspecification, CauchyEst/CauchyEstTree and BatchAvgLeastSquares respectively perform better.

Via