Alert button
Picture for David Robben

David Robben

Alert button

Unsupervised 3D Brain Anomaly Detection

Add code
Bookmark button
Alert button
Oct 09, 2020
Jaime Simarro Viana, Ezequiel de la Rosa, Thijs Vande Vyvere, David Robben, Diana M. Sima

Figure 1 for Unsupervised 3D Brain Anomaly Detection
Figure 2 for Unsupervised 3D Brain Anomaly Detection
Figure 3 for Unsupervised 3D Brain Anomaly Detection
Figure 4 for Unsupervised 3D Brain Anomaly Detection
Viaarxiv icon

AIFNet: Automatic Vascular Function Estimation for Perfusion Analysis Using Deep Learning

Add code
Bookmark button
Alert button
Oct 04, 2020
Ezequiel de la Rosa, Diana M. Sima, Bjoern Menze, Jan S. Kirschke, David Robben

Figure 1 for AIFNet: Automatic Vascular Function Estimation for Perfusion Analysis Using Deep Learning
Figure 2 for AIFNet: Automatic Vascular Function Estimation for Perfusion Analysis Using Deep Learning
Figure 3 for AIFNet: Automatic Vascular Function Estimation for Perfusion Analysis Using Deep Learning
Figure 4 for AIFNet: Automatic Vascular Function Estimation for Perfusion Analysis Using Deep Learning
Viaarxiv icon

Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients

Add code
Bookmark button
Alert button
Aug 21, 2020
Sofie Tilborghs, Ine Dirks, Lucas Fidon, Siri Willems, Tom Eelbode, Jeroen Bertels, Bart Ilsen, Arne Brys, Adriana Dubbeldam, Nico Buls, Panagiotis Gonidakis, Sebastián Amador Sánchez, Annemiek Snoeckx, Paul M. Parizel, Johan de Mey, Dirk Vandermeulen, Tom Vercauteren, David Robben, Dirk Smeets, Frederik Maes, Jef Vandemeulebroucke, Paul Suetens

Figure 1 for Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients
Figure 2 for Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients
Figure 3 for Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients
Figure 4 for Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients
Viaarxiv icon

Improved inter-scanner MS lesion segmentation by adversarial training on longitudinal data

Add code
Bookmark button
Alert button
Feb 03, 2020
Mattias Billast, Maria Ines Meyer, Diana M. Sima, David Robben

Figure 1 for Improved inter-scanner MS lesion segmentation by adversarial training on longitudinal data
Figure 2 for Improved inter-scanner MS lesion segmentation by adversarial training on longitudinal data
Figure 3 for Improved inter-scanner MS lesion segmentation by adversarial training on longitudinal data
Figure 4 for Improved inter-scanner MS lesion segmentation by adversarial training on longitudinal data
Viaarxiv icon

Optimization with soft Dice can lead to a volumetric bias

Add code
Bookmark button
Alert button
Nov 06, 2019
Jeroen Bertels, David Robben, Dirk Vandermeulen, Paul Suetens

Figure 1 for Optimization with soft Dice can lead to a volumetric bias
Figure 2 for Optimization with soft Dice can lead to a volumetric bias
Viaarxiv icon

Detection of vertebral fractures in CT using 3D Convolutional Neural Networks

Add code
Bookmark button
Alert button
Nov 05, 2019
Joeri Nicolaes, Steven Raeymaeckers, David Robben, Guido Wilms, Dirk Vandermeulen, Cesar Libanati, Marc Debois

Figure 1 for Detection of vertebral fractures in CT using 3D Convolutional Neural Networks
Figure 2 for Detection of vertebral fractures in CT using 3D Convolutional Neural Networks
Figure 3 for Detection of vertebral fractures in CT using 3D Convolutional Neural Networks
Figure 4 for Detection of vertebral fractures in CT using 3D Convolutional Neural Networks
Viaarxiv icon

Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning

Add code
Bookmark button
Alert button
Dec 06, 2018
David Robben, Anna M. M. Boers, Henk A. Marquering, Lucianne L. C. M. Langezaal, Yvo B. W. E. M. Roos, Robert J. van Oostenbrugge, Wim H. van Zwam, Diederik W. J. Dippel, Charles B. L. M. Majoie, Aad van der Lugt, Robin Lemmens, Paul Suetens

Figure 1 for Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning
Figure 2 for Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning
Figure 3 for Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning
Figure 4 for Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning
Viaarxiv icon

Perfusion parameter estimation using neural networks and data augmentation

Add code
Bookmark button
Alert button
Oct 11, 2018
David Robben, Paul Suetens

Figure 1 for Perfusion parameter estimation using neural networks and data augmentation
Figure 2 for Perfusion parameter estimation using neural networks and data augmentation
Figure 3 for Perfusion parameter estimation using neural networks and data augmentation
Viaarxiv icon