Alert button
Picture for Henk A. Marquering

Henk A. Marquering

Alert button

Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning

Dec 06, 2018
David Robben, Anna M. M. Boers, Henk A. Marquering, Lucianne L. C. M. Langezaal, Yvo B. W. E. M. Roos, Robert J. van Oostenbrugge, Wim H. van Zwam, Diederik W. J. Dippel, Charles B. L. M. Majoie, Aad van der Lugt, Robin Lemmens, Paul Suetens

Figure 1 for Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning
Figure 2 for Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning
Figure 3 for Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning
Figure 4 for Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning

CT Perfusion (CTP) imaging has gained importance in the diagnosis of acute stroke. Conventional perfusion analysis performs a deconvolution of the measurements and thresholds the perfusion parameters to determine the tissue status. We pursue a data-driven and deconvolution-free approach, where a deep neural network learns to predict the final infarct volume directly from the native CTP images and metadata such as the time parameters and treatment. This would allow clinicians to simulate various treatments and gain insight into predicted tissue status over time. We demonstrate on a multicenter dataset that our approach is able to predict the final infarct and effectively uses the metadata. An ablation study shows that using the native CTP measurements instead of the deconvolved measurements improves the prediction.

* Submitted to Medical Image Analysis 
Viaarxiv icon