Jack
Abstract:This document consolidates publicly reported technical details about Metas Llama 4 model family. It summarizes (i) released variants (Scout and Maverick) and the broader herd context including the previewed Behemoth teacher model, (ii) architectural characteristics beyond a high-level MoE description covering routed/shared-expert structure, early-fusion multimodality, and long-context design elements reported for Scout (iRoPE and length generalization strategies), (iii) training disclosures spanning pre-training, mid-training for long-context extension, and post-training methodology (lightweight SFT, online RL, and lightweight DPO) as described in release materials, (iv) developer-reported benchmark results for both base and instruction-tuned checkpoints, and (v) practical deployment constraints observed across major serving environments, including provider-specific context limits and quantization packaging. The manuscript also summarizes licensing obligations relevant to redistribution and derivative naming, and reviews publicly described safeguards and evaluation practices. The goal is to provide a compact technical reference for researchers and practitioners who need precise, source-backed facts about Llama 4.
Abstract:Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.




Abstract:Federated learning enables resource-constrained edge compute devices, such as mobile phones and IoT devices, to learn a shared model for prediction, while keeping the training data local. This decentralized approach to train models provides privacy, security, regulatory and economic benefits. In this work, we focus on the statistical challenge of federated learning when local data is non-IID. We first show that the accuracy of federated learning reduces significantly, by up to 55% for neural networks trained for highly skewed non-IID data, where each client device trains only on a single class of data. We further show that this accuracy reduction can be explained by the weight divergence, which can be quantified by the earth mover's distance (EMD) between the distribution over classes on each device and the population distribution. As a solution, we propose a strategy to improve training on non-IID data by creating a small subset of data which is globally shared between all the edge devices. Experiments show that accuracy can be increased by 30% for the CIFAR-10 dataset with only 5% globally shared data.