Abstract:Voice-based systems like Amazon Alexa, Google Assistant, and Apple Siri, along with the growing popularity of OpenAI's ChatGPT and Microsoft's Copilot, serve diverse populations, including visually impaired and low-literacy communities. This reflects a shift in user expectations from traditional search to more interactive question-answering models. However, presenting information effectively in voice-only channels remains challenging due to their linear nature. This limitation can impact the presentation of complex queries involving controversial topics with multiple perspectives. Failing to present diverse viewpoints may perpetuate or introduce biases and affect user attitudes. Balancing information load and addressing biases is crucial in designing a fair and effective voice-based system. To address this, we (i) review how biases and user attitude changes have been studied in screen-based web search, (ii) address challenges in studying these changes in voice-based settings like SCS, (iii) outline research questions, and (iv) propose an experimental setup with variables, data, and instruments to explore biases in a voice-based setting like Spoken Conversational Search.
Abstract:Instruments such as eye-tracking devices have contributed to understanding how users interact with screen-based search engines. However, user-system interactions in audio-only channels -- as is the case for Spoken Conversational Search (SCS) -- are harder to characterize, given the lack of instruments to effectively and precisely capture interactions. Furthermore, in this era of information overload, cognitive bias can significantly impact how we seek and consume information -- especially in the context of controversial topics or multiple viewpoints. This paper draws upon insights from multiple disciplines (including information seeking, psychology, cognitive science, and wearable sensors) to provoke novel conversations in the community. To this end, we discuss future opportunities and propose a framework including multimodal instruments and methods for experimental designs and settings. We demonstrate preliminary results as an example. We also outline the challenges and offer suggestions for adopting this multimodal approach, including ethical considerations, to assist future researchers and practitioners in exploring cognitive biases in SCS.
Abstract:The increasing reliance on digital information necessitates advancements in conversational search systems, particularly in terms of information transparency. While prior research in conversational information-seeking has concentrated on improving retrieval techniques, the challenge remains in generating responses useful from a user perspective. This study explores different methods of explaining the responses, hypothesizing that transparency about the source of the information, system confidence, and limitations can enhance users' ability to objectively assess the response. By exploring transparency across explanation type, quality, and presentation mode, this research aims to bridge the gap between system-generated responses and responses verifiable by the user. We design a user study to answer questions concerning the impact of (1) the quality of explanations enhancing the response on its usefulness and (2) ways of presenting explanations to users. The analysis of the collected data reveals lower user ratings for noisy explanations, although these scores seem insensitive to the quality of the response. Inconclusive results on the explanations presentation format suggest that it may not be a critical factor in this setting.
Abstract:Information access systems are getting complex, and our understanding of user behavior during information seeking processes is mainly drawn from qualitative methods, such as observational studies or surveys. Leveraging the advances in sensing technologies, our study aims to characterize user behaviors with physiological signals, particularly in relation to cognitive load, affective arousal, and valence. We conduct a controlled lab study with 26 participants, and collect data including Electrodermal Activities, Photoplethysmogram, Electroencephalogram, and Pupillary Responses. This study examines informational search with four stages: the realization of Information Need (IN), Query Formulation (QF), Query Submission (QS), and Relevance Judgment (RJ). We also include different interaction modalities to represent modern systems, e.g., QS by text-typing or verbalizing, and RJ with text or audio information. We analyze the physiological signals across these stages and report outcomes of pairwise non-parametric repeated-measure statistical tests. The results show that participants experience significantly higher cognitive loads at IN with a subtle increase in alertness, while QF requires higher attention. QS involves demanding cognitive loads than QF. Affective responses are more pronounced at RJ than QS or IN, suggesting greater interest and engagement as knowledge gaps are resolved. To the best of our knowledge, this is the first study that explores user behaviors in a search process employing a more nuanced quantitative analysis of physiological signals. Our findings offer valuable insights into user behavior and emotional responses in information seeking processes. We believe our proposed methodology can inform the characterization of more complex processes, such as conversational information seeking.
Abstract:Creating and deploying customized applications is crucial for operational success and enriching user experiences in the rapidly evolving modern business world. A prominent facet of modern user experiences is the integration of chatbots or voice assistants. The rapid evolution of Large Language Models (LLMs) has provided a powerful tool to build conversational applications. We present Walert, a customized LLM-based conversational agent able to answer frequently asked questions about computer science degrees and programs at RMIT University. Our demo aims to showcase how conversational information-seeking researchers can effectively communicate the benefits of using best practices to stakeholders interested in developing and deploying LLM-based chatbots. These practices are well-known in our community but often overlooked by practitioners who may not have access to this knowledge. The methodology and resources used in this demo serve as a bridge to facilitate knowledge transfer from experts, address industry professionals' practical needs, and foster a collaborative environment. The data and code of the demo are available at https://github.com/rmit-ir/walert.
Abstract:Knowledge graphs (KGs) are becoming essential resources for many downstream applications. However, their incompleteness may limit their potential. Thus, continuous curation is needed to mitigate this problem. One of the strategies to address this problem is KG alignment, i.e., forming a more complete KG by merging two or more KGs. This paper proposes i-Align, an interpretable KG alignment model. Unlike the existing KG alignment models, i-Align provides an explanation for each alignment prediction while maintaining high alignment performance. Experts can use the explanation to check the correctness of the alignment prediction. Thus, the high quality of a KG can be maintained during the curation process (e.g., the merging process of two KGs). To this end, a novel Transformer-based Graph Encoder (Trans-GE) is proposed as a key component of i-Align for aggregating information from entities' neighbors (structures). Trans-GE uses Edge-gated Attention that combines the adjacency matrix and the self-attention matrix to learn a gating mechanism to control the information aggregation from the neighboring entities. It also uses historical embeddings, allowing Trans-GE to be trained over mini-batches, or smaller sub-graphs, to address the scalability issue when encoding a large KG. Another component of i-Align is a Transformer encoder for aggregating entities' attributes. This way, i-Align can generate explanations in the form of a set of the most influential attributes/neighbors based on attention weights. Extensive experiments are conducted to show the power of i-Align. The experiments include several aspects, such as the model's effectiveness for aligning KGs, the quality of the generated explanations, and its practicality for aligning large KGs. The results show the effectiveness of i-Align in these aspects.
Abstract:With the rapid growth of online misinformation, it is crucial to have reliable fact-checking methods. Recent research on finding check-worthy claims and automated fact-checking have made significant advancements. However, limited guidance exists regarding the presentation of fact-checked content to effectively convey verified information to users. We address this research gap by exploring the critical design elements in fact-checking reports and investigating whether credibility and presentation-based design improvements can enhance users' ability to interpret the report accurately. We co-developed potential content presentation strategies through a workshop involving fact-checking professionals, communication experts, and researchers. The workshop examined the significance and utility of elements such as veracity indicators and explored the feasibility of incorporating interactive components for enhanced information disclosure. Building on the workshop outcomes, we conducted an online experiment involving 76 crowd workers to assess the efficacy of different design strategies. The results indicate that proposed strategies significantly improve users' ability to accurately interpret the verdict of fact-checking articles. Our findings underscore the critical role of effective presentation of fact reports in addressing the spread of misinformation. By adopting appropriate design enhancements, the effectiveness of fact-checking reports can be maximized, enabling users to make informed judgments.
Abstract:This paper proposes a novelty approach to mitigate the negative transfer problem. In the field of machine learning, the common strategy is to apply the Single-Task Learning approach in order to train a supervised model to solve a specific task. Training a robust model requires a lot of data and a significant amount of computational resources, making this solution unfeasible in cases where data are unavailable or expensive to gather. Therefore another solution, based on the sharing of information between tasks, has been developed: Multi-Task Learning (MTL). Despite the recent developments regarding MTL, the problem of negative transfer has still to be solved. Negative transfer is a phenomenon that occurs when noisy information is shared between tasks, resulting in a drop in performance. This paper proposes a new approach to mitigate the negative transfer problem based on the task awareness concept. The proposed approach results in diminishing the negative transfer together with an improvement of performance over classic MTL solution. Moreover, the proposed approach has been implemented in two unified architectures to detect Sexism, Hate Speech, and Toxic Language in text comments. The proposed architectures set a new state-of-the-art both in EXIST-2021 and HatEval-2019 benchmarks.
Abstract:With the increasing influence of social media platforms, it has become crucial to develop automated systems capable of detecting instances of sexism and other disrespectful and hateful behaviors to promote a more inclusive and respectful online environment. Nevertheless, these tasks are considerably challenging considering different hate categories and the author's intentions, especially under the learning with disagreements regime. This paper describes AI-UPV team's participation in the EXIST (sEXism Identification in Social neTworks) Lab at CLEF 2023. The proposed approach aims at addressing the task of sexism identification and characterization under the learning with disagreements paradigm by training directly from the data with disagreements, without using any aggregated label. Yet, performances considering both soft and hard evaluations are reported. The proposed system uses large language models (i.e., mBERT and XLM-RoBERTa) and ensemble strategies for sexism identification and classification in English and Spanish. In particular, our system is articulated in three different pipelines. The ensemble approach outperformed the individual large language models obtaining the best performances both adopting a soft and a hard label evaluation. This work describes the participation in all the three EXIST tasks, considering a soft evaluation, it obtained fourth place in Task 2 at EXIST and first place in Task 3, with the highest ICM-Soft of -2.32 and a normalized ICM-Soft of 0.79. The source code of our approaches is publicly available at https://github.com/AngelFelipeMP/Sexism-LLM-Learning-With-Disagreement.
Abstract:Physiological signals can potentially be applied as objective measures to understand the behavior and engagement of users interacting with information access systems. However, the signals are highly sensitive, and many controls are required in laboratory user studies. To investigate the extent to which controlled or uncontrolled (i.e., confounding) variables such as task sequence or duration influence the observed signals, we conducted a pilot study where each participant completed four types of information-processing activities (READ, LISTEN, SPEAK, and WRITE). Meanwhile, we collected data on blood volume pulse, electrodermal activity, and pupil responses. We then used machine learning approaches as a mechanism to examine the influence of controlled and uncontrolled variables that commonly arise in user studies. Task duration was found to have a substantial effect on the model performance, suggesting it represents individual differences rather than giving insight into the target variables. This work contributes to our understanding of such variables in using physiological signals in information retrieval user studies.